满分5 > 初中数学试题 >

已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G不与正方...

已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(PG不与正方形顶点重合,且在CD的同侧),PD=PGDFPG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF

1)如图1,当点P与点G分别在线段BC与线段AD上时.

①求证:DG=2PC

②求证:四边形PEFD是菱形;

2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.

 

(1)①证明见解析;②证明见解析;(2)四边形PEFD是菱形.理由见解析. 【解析】试题(1)①作PM⊥DG于M,根据等腰三角形的性质由PD=PG得MG=MD,根据矩形的判定易得四边形PCDM为矩形,则PC=MD,于是有DG=2PC; ②根据四边形ABCD为正方形得AD=AB,由四边形ABPM为矩形得AB=PM,则AD=PM,再利用等角的余角相等得到∠GDH=∠MPG,于是可根据“ASA”证明△ADF≌△MPG,得到DF=PG,加上PD=PG,得到DF=PD,然后利用旋转的性质得∠EPG=90°,PE=PG,所以PE=PD=DF,再利用DF⊥PG得到DF∥PE,于是可判断四边形PEFD为平行四边形,加上DF=PD,则可判断四边形PEFD为菱形; (2)与(1)中②的证明方法一样可得到四边形PEFD为菱形. 试题解析:(1)①作PM⊥DG于M,如图1, ∵PD=PG, ∴MG=MD, ∵四边形ABCD为矩形, ∴PCDM为矩形, ∴PC=MD, ∴DG=2PC; ②∵四边形ABCD为正方形, ∴AD=AB, ∵四边形ABPM为矩形, ∴AB=PM, ∴AD=PM, ∵DF⊥PG, ∴∠DHG=90°, ∴∠GDH+∠DGH=90°, ∵∠MGP+∠MPG=90°, ∴∠GDH=∠MPG, 在△ADF和△MPG中, , ∴△ADF≌△MPG(ASA), ∴DF=PG, 而PD=PG, ∴DF=PD, ∵线段PG绕点P逆时针旋转90°得到线段PE, ∴∠EPG=90°,PE=PG, ∴PE=PD=DF, 而DF⊥PG, ∴DF∥PE, 即DF∥PE,且DF=PE, ∴四边形PEFD为平行四边形, ∵DF=PD, ∴四边形PEFD为菱形; (2)【解析】 四边形PEFD是菱形.理由如下: 作PM⊥DG于M,如图2, 与(1)一样同理可证得△ADF≌△MPG, ∴DF=PG, 而PD=PG, ∴DF=PD, ∵线段PG绕点P逆时针旋转90°得到线段PE, ∴∠EPG=90°,PE=PG, ∴PE=PD=DF 而DF⊥PG, ∴DF∥PE, 即DF∥PE,且DF=PE, ∴四边形PEFD为平行四边形, ∵DF=PD, ∴四边形PEFD为菱形.
复制答案
考点分析:
相关试题推荐

为了保护环境,某开发区综合治理指挥部决定购买AB两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:

污水处理设备
 

A
 

B
 

价格(万元/台)
 

m
 

m-3
 

月处理污水量(吨/台)
 

220
 

180
 

 

1)求m的值;

2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.

 

查看答案

如图,在正方形ABCD中,EAB上一点,FAD延长线上一点,且DF=BE

1)求证:CE=CF

2)若点GAD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

 

查看答案

在下列的网格图中.每个小正方形的边长均为1个单位,在RtABC中,∠C=90°,AC=3,BC=4.

(1)试在图中作出ABCA为旋转中心,沿顺时针方向旋转90°后的图形AB1C1

(2)若点B的坐标为(-3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;

(3)根据(2)中的坐标系作出与ABC关于原点对称的图形A2B2C2,并标出B2、C2两点的坐标.

 

查看答案

如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.

 

 

查看答案

如图,在平行四边形ABCD中,∠B=AFEEA是∠BEF的平分线,求证:

  (1)ABE≌△AFE

  (2)FAD=CDE.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.