抛物线与轴交点的坐标为( )
A. B. C. D.
直线y=kx+b经过第二、三、四象限,那么( )
A. , B. , C. , D. ,
已知⊙O的半径为2,一点P到圆心O的距离为4,则点P在( )
A. 圆内 B. 圆上 C. 圆外 D. 无法确定
如图,直线l1:y=x+12与x轴、y轴分别交于A、B两点,直线l2与x轴、y轴分别交于C、B两点,且AB:BC=3:4.
(1)求直线l2的解析式,并直接判断△ABC的形状(不需说明理由);
(2)如图1,P为直线l1上一点,横坐标为12,Q为直线l2上一动点,当PQ+CQ最小时,将线段PQ沿射线PA方向平移,平移后P、Q的对应点分别为P'、Q',当OQ'+BQ'最小时,求点Q'的坐标;
在平面直角坐标系xOy中,抛物线y=ax2-4ax+4a+3(a<0)的顶点为D,它的对称轴与x轴交点为M.
(1)求点D、点M的坐标;
(2)如果该抛物线与y轴的交点为A,点P在抛物线上,且有MA∥DP,DP=AM,求该抛物线解析式.
画图(要求:以下操作均只使用无刻度的直尺)
(1)在直角坐标系中我们把横、纵坐标都为整数的点称为整点.如图1中点A(1,2)、B(3,4),在图1中第一象限内找出所有的整点P(图上标为P1、P2),使得点P横、纵坐标的平方和等于20.
(2)如图2,是大小相等的边长为1的正方形构成的网格,A、B、C、D均为格点.请在线段AD上找一点P,并连结BP使得直线BP将四边形ABCD的面积分为1:2两部分,在图中画出线段BP,并简要说明你的画图方法.