如图已知AB为⊙O的直径,CD切⊙O于C点,弦CF⊥AB于E点,连结AC.
(1)探索AC满足什么条件时,有AD⊥CD,并加以证明.
(2)当AD⊥CD,OA=5cm,CD=4cm,求△OCF面积.
杂技团进行杂技表演,演员从跷跷板右端A处弹跳到人梯顶端椅子B处,其身体看成一点的路线是抛物线的一部分,如图所示.
求演员弹跳离地面的最大高度;
已知人梯高米,在一次表演中,人梯到起跳点A的水平距离是4米,问这次表演是否成功?请说明理由.
如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.
(1)在网格中画出△A1B1C1;(2)在网格中画出△A1B2C2.
计算:.
如图,Rt△ABC中,AB⊥BC,AB=12,BC=8,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为___.
为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高______米.(结果精确到1米.≈1.732,≈1.414)