满分5 > 初中数学试题 >

(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥B...

1)如图1,在矩形ABCD中,对角线ACBD相交于点O,过点O作直线EFBD,且交AD于点E,交BC于点F,连接BEDF,且BE平分∠ABD

①求证:四边形BFDE是菱形;

②直接写出∠EBF的度数.

2)把(1)中菱形BFDE进行分离研究,如图2GI分别在BFBE边上,且BGBI,连接GDHGD的中点,连接FH,并延长FHED于点J,连接IJIHIFIG.试探究线段IHFH之间满足的关系,并说明理由;

3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足ABAD时,点E是对角线AC上一点,连接DE,作EFDE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AGGEEC三者之间满足的数量关系.

 

(1)①详见解析;②60°.(2)IH=FH;(3)EG2=AG2+CE2. 【解析】 (1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可. ②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题. (2)IH=FH.只要证明△IJF是等边三角形即可. (3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题. (1)①证明:如图1中, ∵四边形ABCD是矩形, ∴AD∥BC,OB=OD, ∴∠EDO=∠FBO, 在△DOE和△BOF中, , ∴△DOE≌△BOF, ∴EO=OF,∵OB=OD, ∴四边形EBFD是平行四边形, ∵EF⊥BD,OB=OD, ∴EB=ED, ∴四边形EBFD是菱形. ②∵BE平分∠ABD, ∴∠ABE=∠EBD, ∵EB=ED, ∴∠EBD=∠EDB, ∴∠ABD=2∠ADB, ∵∠ABD+∠ADB=90°, ∴∠ADB=30°,∠ABD=60°, ∴∠ABE=∠EBO=∠OBF=30°, ∴∠EBF=60°. (2)结论:IH=FH. 理由:如图2中,延长BE到M,使得EM=EJ,连接MJ. ∵四边形EBFD是菱形,∠B=60°, ∴EB=BF=ED,DE∥BF, ∴∠JDH=∠FGH, 在△DHJ和△GHF中, , ∴△DHJ≌△GHF, ∴DJ=FG,JH=HF, ∴EJ=BG=EM=BI, ∴BE=IM=BF, ∵∠MEJ=∠B=60°, ∴△MEJ是等边三角形, ∴MJ=EM=NI,∠M=∠B=60° 在△BIF和△MJI中, , ∴△BIF≌△MJI, ∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF, ∴IH⊥JF, ∵∠BFI+∠BIF=120°, ∴∠MIJ+∠BIF=120°, ∴∠JIF=60°, ∴△JIF是等边三角形, 在Rt△IHF中,∵∠IHF=90°,∠IFH=60°, ∴∠FIH=30°, ∴IH=FH. (3)结论:EG2=AG2+CE2. 理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM, ∵∠FAD+∠DEF=90°, ∴AFED四点共圆, ∴∠EDF=∠DAE=45°,∠ADC=90°, ∴∠ADF+∠EDC=45°, ∵∠ADF=∠CDM, ∴∠CDM+∠CDE=45°=∠EDG, 在△DEM和△DEG中, , ∴△DEG≌△DEM, ∴GE=EM, ∵∠DCM=∠DAG=∠ACD=45°,AG=CM, ∴∠ECM=90° ∴EC2+CM2=EM2, ∵EG=EM,AG=CM, ∴GE2=AG2+CE2.
复制答案
考点分析:
相关试题推荐

如图,ABC中,∠ACB90°ACCB2,以BC为边向外作正方形BCDE,动点MA点出发,以每秒1个单位的速度沿着ACD的路线向D点匀速运动(M不与AD重合);过点M作直线lADl与路线ABD相交于N,设运动时间为t秒:

1)填空:当点MAC上时,BN     (用含t的代数式表示);

2)当点MCD上时(含点C),是否存在点M,使DEN为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由;

3)过点NNFED,垂足为F,矩形MDFNABD重叠部分的面积为S,求S的最大值.

 

查看答案

一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示yx之间的函数关系,根据图象解决以下问题:

1)慢车的速度为     km/h,快车的速度为     km/h

2)解释图中点C的实际意义并求出点C的坐标;

3)求当x为多少时,两车之间的距离为500km

 

查看答案

如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,交AC于G,F是AD的中点.

(1)求证:四边形ADCE是平行四边形;

(2)若EB是∠AEC的角平分线,请写出图中所有与AE相等的边.

 

查看答案

某校300名学生参加植树活动,要求每人植47棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A4棵;B5棵;C6棵;D7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.

回答下列问题:

1)条形图中存在错误的类型是     ,人数应该为     人;

2)写出这20名学生每人植树量的众数     棵,中位数     棵;

3)估计这300名学生共植树     棵.

 

查看答案

如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点

(1)在图1中以格点为顶点画一个面积为5的正方形;

(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.