-3的相反数是 ( )
A. 3 B. -3 C. - D.
如图,直线交坐标轴于A、B两点,直线AC⊥AB交x轴于点C,抛物线恰好过点A、B、C.
(1)求抛物线的表达式.
(2)当点M在线段AB上方的曲线上移动时,求四边形AOBM的面积的最大值.
如图,⊙O是△ABC的外接圆,AB为⊙O的直径,过点C作∠BCD=∠CAB交AB的延长线于点D,过点O作直径EF∥BC,交AC于点G.
(1)求证:CD是⊙O的切线.
(2)若⊙O的半径为2,∠BCD=30°.
①连接AE、DE,求证:四边形ACDE是菱形.
②当点P是线段AD上的一动点时,求PF+PG的最小值.
二次函数
(1)画出上述二次函数的图象;
(2)如图,二次函数的图象与x轴的其中一个交点是B,与y轴的交点是C,直线BC与反比例函数的图象交于点D,且BC=3CD,求反比例函数的解析式.
(3)在(2)的条件下,x轴上的点P的横坐标是多少时,△BCP与△OCD相似.
矩形ABCD中,AB=4,BC=3,点E为AB的中点,将矩形ABCD沿CE折叠,使得点B落到点F的位置.
(1)求证:AF∥CE.
(2)求AF的长度.
学生利用微课学习已经越来越多,某学校调查了若干名学生利用微课学习语文、数学、英语、物理、历史的情况,根据结果绘制成如图所示的两幅不完整的统计图,请结合图中信息解决下列问题:
(1)抽取了____名学生进行调查.
(2)将条形统计图补充完整.
(3)估计学生利用微课学习哪料的人数最多?若该校有2000名学生,估计有多少人利用微课学习该学科.