满分5 > 初中数学试题 >

如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰...

如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈cos67°≈tan67°≈≈1.414).

 

风筝距地面的高度49.9 m. 【解析】 作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5, 在Rt△AHE中,利用∠AEH的正切列方程求解即可. 如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H. ∵∠ABF=45°,∠AFB=90°, ∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5, 在Rt△AHE中,tan67°=, ∴, 解得x≈19.9 m. ∴AM=19.9+30=49.9 m. ∴风筝距地面的高度49.9 m.
复制答案
考点分析:
相关试题推荐

如图,在RtABC中,∠ACB=90°,以AC为直径的⊙OAB边交于点D,过点D作⊙O的切线.交BC于点E.

(1)求证:BE=EC

(2)填空:①若∠B=30°,AC=2,则DB=      

②当∠B=      度时,以O,D,E,C为顶点的四边形是正方形.

 

查看答案

某品牌牛奶供应商提供ABCD四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.

根据统计图的信息解决下列问题:

1)本次调查的学生有多少人?

2)补全上面的条形统计图;

3)扇形统计图中C对应的中心角度数是     

4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,AB口味的牛奶共约多少盒?

 

查看答案

先化简,然后从﹣102中选一个合适的x的值,代入求值。

 

查看答案

如图,矩形ABCD中,AB4AD6,点EAD中点,点P为线段AB上一个动点,连接EP,将△APE沿PE折叠得到△FPE,连接CECF,当△ECF为直角三角形时,AP的长为_____

 

查看答案

如图,在RtAOB中,∠AOB=90°,OA=2,OB=1,将RtAOB绕点O顺时针旋转90°后得到RtFOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是__

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.