满分5 > 初中数学试题 >

如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点...

如图,在平面直角坐标系中,直线l1y=﹣x与反比例函数y的图象交于AB两点(点A在点B左侧),已知A点的纵坐标是2

1)求反比例函数的表达式;

2)根据图象直接写出﹣x的解集;

3)将直线l1y-x沿y向上平移后的直线l2与反比例函数y在第二象限内交于点C,如果ABC的面积为30,求平移后的直线l2的函数表达式.

 

(1)y= ;(2)y=﹣x+; 【解析】 (1)直线l1:y= - x经过点A,且A点的纵坐标是2,可得A(-4,2),代入反比例函数解析式可得k的值;(2)根据图象得到点B的坐标,进而直接得到﹣ x> 的解集即可;(3)设平移后的直线 与 x 轴交于点 D,连接 AD,BD,由平行线的性质可得出S△ABC=S△ABF,即可得出关于OD的一元一次方程,解方程即可得出结论. (1)∵直线 l1:y=﹣x 经过点 A,A 点的纵坐标是 2, ∴当 y=2 时,x=﹣4, ∴A(﹣4,2), ∵反比例函数 y=的图象经过点 A, ∴k=﹣4×2=﹣8, ∴反比例函数的表达式为 y=﹣; (2)∵直线 l1:y=﹣x 与反比例函数 y=的图象交于 A,B 两点, ∴B(4,﹣2), ∴不等式﹣ x> 的解集为 x<﹣4 或 0<x<4; (3)如图,设平移后的直线 与 x 轴交于点 D,连接 AD,BD, ∵CD∥AB, ∴△ABC 的面积与△ABD 的面积相等, ∵△ABC 的面积为 30, ∴S△AOD+S△BOD=30,即 OD(|yA|+|yB|)=30, ∴×OD×4=30, ∴OD=15, ∴D(15,0), 设平移后的直线 的函数表达式为 y=﹣x+b, 把 D(15,0)代入,可得 0=﹣×15+b, 解得 b=, ∴平移后的直线 的函数表达式为 y=-.
复制答案
考点分析:
相关试题推荐

如图,点M是正方形ABCD的边BC上一点,连接AM,点E是线段AM上一点,∠CDE的平分线交AM延长线于点F

(1)如图1,若点E为线段AM的中点,BMCM12BE,求AB的长;

(2)如图2,若DADE,求证:BF+DFAF

 

查看答案

某校九年级(2)班在测量校内旗杆高度的数学活动中,第一组的同学设计了两种测量方案,并根据测量结果填写了如下《数学活动报告》中的一部分.

课题

测量校内旗杆高度

目的

运用所学数学知识及数学方法解决实际问题﹣﹣﹣测量旗杆高度

方案

方案一

方案二

方案三

 

 

 

 

示意图

 

测量工具

皮尺、测角仪

皮尺、测角仪

 

测量数据

AM1.5mAB10m

α30°,∠β60°

AM1.5mAB20m

α30°,∠β60°

 

计算过程(

果保留根号)

【解析】

【解析】

 

 

(1)请你在方案一二中任选一种方案(多选不加分),根据方案提供的示意图及相关数据填写表中的计算过程、测量结果;

(2)请你根据所学的知识,再设计一种不同于方案一、二的测量方案三,并完成表格中方案三的所有栏目的填写.(要求:在示意图中标出所需的测量数据长度用字母abc…表示,角度用字母αβγ…表示)

 

查看答案

(1)计算:(2019π)0+

(2)解方程:3x(1x)2x2

 

查看答案

如图,已知在RtABC中,ABAC3,在△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PDPE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形依次进行下去,则第2014个内接正方形的边长为____

 

查看答案

如图,AD是⊙O的直径,弦BCAD,连接ABACOC,若∠COD60°,则∠BAD_____

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.