如图,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,B(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.
(1)直接写出直线DE的解析式_________;
(2)若反比例函数y=(x>0)的图象与直线MN有且只有一个公共点,求m的值.
(3)在分别过M,B的双曲线y=(x>0)上是否分别存在点F,G使得B,M,F,G构成平行四边形,若存在则求出F点坐标, 若不存在则说明理由.
如图,在某校图书馆门前一段笔直的内部道路AB上,过往车辆限速3米/秒在点B的正上方距其7米高的C处有一个探测仪.一辆轿车从点A匀速向点B行驶5秒后此轿车到达D点,探测仪测得∠CAB=18°,∠CDB=45°,求AD之间的距离,并判断此轿车是否超速,(结果精确到0.01米)(参考数据:sinl8°=0.309,cosl8°=0.951,tanl8°=0.325)
今年是我市全面推进中小学校“社会主义核心价值观”教育年.某校对全校学生进行了中期检测评价,检测结果分为(优秀)、(良好)、(合格)、(不合格)四个等级.并随机抽取若干名学生的检测结果作为样本进行数据处理,制作了如下所示不完整的统计表(图1)和统计图(图2).
请根据图1、图2提供的信息,解答下列问题:
(1)本次随机抽取的样本容量为
(2) , .
(3)请在图2中补全条形统计图.
(4)若该校共有学生800人,据此估算,该校学生在本次检测中达到“(优秀)”等级的学生人数为 人.
已知关于x的方程x2﹣2mx+m2+m﹣2=0有两个不相等的实数根.
(1)求m的取值范围.
(2)当m为正整数时,求方程的根.
(1)计算 |1-|+3tan30°-(-5)0-(-)-1.
(2) 化简分式:,并从这四个数中取一个合适的数作为x的值代入求值.
如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于 。