如图1,现有一个长方体水槽放在桌面上,从水槽内量得它的侧面高20cm,底面的长25cm,宽20cm,水槽内水的高度为acm,往水槽里放入棱长为10cm的立方体铁块.
(1)求下列两种情况下a的值.
①若放入铁块后水面恰好在铁块的上表面;
②若放入铁块后水槽恰好盛满(无溢出).
(2)若0<a≤18,求放入铁块后水槽内水面的高度(用含a的代数式表示).
(3)如图2,在水槽旁用管子连通一个底面在桌面上的圆柱形容器,内部底面积为50cm2,管口底部A离水槽内底面的高度为hcm(h>a),水槽内放入铁块,水溢入圆柱形容器后,容器内水面与水槽内水面的高度差为8.2cm,若a=15,求h的值.(水槽和容器的壁及底面厚度相同)
我国在数的发展上有辉煌的成就,中国古代的算筹计数法可追溯到公元前五世纪,算筹是竹制的小棍,摆法有纵式和横式两种(如图1).以算筹计数的方法是:摆个位为纵,十位为横,百位为纵,千位为横……,这样纵横依次交替,零以空格表示.如3257表示成“”.
(1)请用算筹表示数23,701;(分别表示在答题卷的图2、图3中)
(2)用三根算筹表示两位数(十位不能为零,且用完三根算筹),在答题卷的图4中摆出来,并在下方横线上填上所表示的数.(注:图4中的双方框个数过多).
如图,直线AB、CD相交于点O.已知∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度数;
(2)若OF平分∠BOE,问:OB是∠DOF的平分线吗?试说明理由.
如图,已知四个点A、B、C、D.
(1)作下列图形:
①线段AB;
②射线CD;
③直线AC.
(2)在直线AC上画出符合下列条件的点P和Q,并说明理由.
①使线段DP长度最小;
②使BQ+DQ最小.
计算:
(1)-×-;
(2)4-(-3)2×(2-÷)
已知2的平方等于a,2b-1是27的立方根,±表示3的平方根.
(1)求a,b,c的值;
(2)化简关于x的多项式:|x-a|-2(x+b)-c,其中x<4.