如图,▱ABCD中,E为平行四边形内部一点,连接AE,BE,CE.
(1)如图1,AE⊥BC交BC于点F,已知∠EBC=45°,∠BAF=∠ECF,AB=,EF=1,求AD的长;
(2)如图2,AE⊥CD交CD于点F,AE=CF且∠BEC=90°,G为AB上一点,作GP⊥BE且GP=CE,并以BG为斜边作等腰Rt△BGH,连接EP、EH.求证:EP=EH.
随着越来越多年轻家长对低幼阶段孩子英语口语的重视,某APP顺势推出了“北美外教在线授课”系列课程,提供“A课程”、“B课程”两种不同课程供家长选择.已知购买“A课程”3课时与“B课程”5课时共需付款410元,购买“A课程”5课时与“B课程”3课时共需付款470元.
(1)请问购买“A课程”1课时多少元?购买“B课程”1课时多少元?
(2)根据市场调研,APP销售“A课程”1课时获利25元,销售“B课程”1课时获利20元,临近春节,小融计划用不低于3000元且不超过3600元的压岁钱购买两种课程共60课时,请问购买“A课程”多少课时才使得APP的获利最高?
定义一种新运算:a⊕b=
(1)请写出函数y=x⊕1的解析式,并在所给的平面直角坐标系中画出该函数图象;
(2)观察(1)中图象,探究得到y的最小值是 .
如图,分别延长▱ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.
已知直线l1:y=kx过点(1,2),与直线l2:y=﹣3x+b相交于点A,若l2与x轴交于点B(2,0),与y轴交于点C.
(1)分别求出直线11,l2的解析式;
(2)求△OAC的面积.
解不等式组:并将解集在数轴上表示.