(1)(操作发现)
如图 1,在边长为 1 个单位长度的小正方形组成的网格中,∆ABC 的三个顶点均在格点上.现将∆ABC 绕点 A 按顺时针方向旋转 90°,点 B 的对应点为 B′,点 C 的对应点为 C′, 连接 BB′,如图所示则∠AB′B= .
(2)(解决问题)
如图 2,在等边∆ABC 内有一点 P,且 PA=2,PB= ,PC=1,如果将△BPC 绕点 B 顺时针旋转 60°得出△ABP′,求∠BPC 的度数和 PP′的长;
(3)(灵活运用)
如图 3,将(2)题中“在等边∆ABC 内有一点 P 改为“在等腰直角三角形 ABC 内有一点P”,且 BA=BC,PA=6,BP=4,PC=2,求∠BPC 的度数.
如图平面直角坐标系中,已知三点 A(0,7),B(8,1),C(x,0)且 0<x <8.
(1)求线段 AB 的长;
(2)请用含 x 的代数式表示 AC+BC 的值;
(3)求 AC+BC 的最小值.
我市茶叶专卖店销售某品牌茶叶,其进价为每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后来经过市场调查发现,单价每降低 10 元,则平均每周的销售量可增加 40 千克,若该专卖店销售这种品牌茶叶要想平均每周获利 41600 元,请回答:
(1)每千克茶叶应降价多少元?
(2)在平均每周获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的 几折出售?
某公司 2018 年投入广告经费 2 亿元,计划 2020 年要投入广告经费比 2018 年降低 19%, 已知 2018 年至 2020 年的广告经费投入以相同的百分率逐年降低,求 2019 年要投入的广告经费是多少 万元?
关于 x 的方程(m-1)x2-4x-3-m=0.求证:无论 m 取何值时,方程总有实数根.
今有池方一丈,葭生其中央,出水一尺。引葭赴岸,适与岸齐。问水深、葭长各几何?译文:有一个边长为 10 尺的正方形水池正中间长有一棵芦苇,高出水面 1 尺,把芦苇拉向岸边,刚好到岸.问:池水有多深?芦苇有多高?