满分5 > 初中数学试题 >

已知,在矩形ABCD中,AB=4,BC=2,点M为边BC的中点,点P为边CD上的...

已知,在矩形ABCD中,AB=4BC=2,点M为边BC的中点,点P为边CD上的动点(点P异于CD两点)。连接PM,过点PPM的垂线与射线DA相交于点E(如图)。设CP=xDE=y

1)写出yx之间的函数关系式    ▲  

2)若点E与点A重合,则x的值为    ▲  

3)是否存在点P,使得点D关于直线PE的对称点D′落在边AB上?若存在,求x的值;若不存在,请说明理由。

 

(1)y=-x2+4x(2)或(3)存在,当时,点D关于直线PE的对称点D′落在边AB上 【解析】 【解析】 (1)y=-x2+4x。 (2)或。 (3)存在。 过点P作PH⊥AB于点H。 则 ∵点D关于直线PE的对称点D′落在边AB上, ∴P D′=PD=4-x,E D′="ED=" y=-x2+4x,EA=AD-ED= x2-4x+2,∠P D′E=∠D=900。 在Rt△D′P H中,PH=2, D′P =DP=4-x,D′H=。 ∵∠ E D′A=1800-900-∠P D′H=900-∠P D′H=∠D′P H,∠P D′E=∠P HD′ =900, ∴△E D′A∽△D′P H。∴,即, 即,两边平方并整理得,2x2-4x+1=0。解得。 ∵当时,y=, ∴此时,点E已在边DA延长线上,不合题意,舍去(实际上是无理方程的增根)。 ∵当时,y=, ∴此时,点E在边AD上,符合题意。 ∴当时,点D关于直线PE的对称点D′落在边AB上。 (1)∵CM=1,CP=x,DE=y,DP=4-x,且△MCP∽△PDE, ∴,即。∴y=-x2+4x。 (2)当点E与点A重合时,y=2,即2=-x2+4x,x2-4x+2=0。 解得。 (3)过点P作PH⊥AB于点H,则由点D关于直线PE的对称点D′落在边AB上,可得△E D′A与△D′P H相似,由对应边成比例得得关于x的方程即可求解。注意检验。  
复制答案
考点分析:
相关试题推荐

如图,△ABC内接于O,过点CBC的垂线交OD,点EBC的延长线上,且∠DEC=∠BAC

1)求证:DEO的切线;

2)若ACDE,当AB8CE2时,求O直径的长.

 

查看答案

如图,在△ABC中,∠ABC90°,BC3DAC延长线上一点,AC3CD,过点DDHAB,交BC的延长线于点H,求BDcosHBD的值.

 

查看答案

如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点BCE在同一水平直线上).已知AB80mDE10m,求障碍物BC两点间的距离.(结果保留根号)

 

查看答案

如图,一次函数y1=﹣x1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2m).

1)求反比例函数的解析式;

2)当y2y1时,求x的取值范围;

3)求点B到直线OM的距离.

 

查看答案

如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).

(1)请在图中,画出ABC向左平移6个单位长度后得到的△A1B1C1

(2)以点O为位似中心,将ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.