满分5 > 初中数学试题 >

如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的...

如图,直线AB和抛物线的交点是A0,﹣3),B59),已知抛物线的顶点D的横坐标是2

1)求抛物线的解析式及顶点坐标;

2)在x轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;

3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

 

(1),顶点D(2,);(2)C(,0)或(,0)或(,0);(3) 【解析】 (1)抛物线的顶点D的横坐标是2,则x2,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解; (2)分AB=AC、AB=BC、AC=BC,三种情况求解即可; (3)由S△PAB•PH•xB,即可求解. (1)抛物线的顶点D的横坐标是2,则x2①,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3②,联立①、②解得:a,b,c=﹣3,∴抛物线的解析式为:yx2x﹣3. 当x=2时,y,即顶点D的坐标为(2,); (2)A(0,﹣3),B(5,9),则AB=13,设点C坐标(m,0),分三种情况讨论: ①当AB=AC时,则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0); ②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0); ③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,则点C坐标为(,0). 综上所述:存在,点C的坐标为:(±4,0)或(5,0)或(,0); (3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k,故函数的表达式为:yx﹣3,设点P坐标为(m,m2m﹣3),则点H坐标为(m,m﹣3),S△PAB•PH•xB(m2+12m)=-6m2+30m=,当m=时,S△PAB取得最大值为:. 答:△PAB的面积最大值为.
复制答案
考点分析:
相关试题推荐

已知:如图,在矩形ABCD中,MN分别是边ADBC的中点,EF分别是线段BMCM的中点.

1)求证:△ABM≌△DCM

2)判断四边形MENF是什么特殊四边形,并证明你的结论;

3)当四边形MENF是正方形时,求ADAB的值.

 

查看答案

如图,一次函数y1=﹣x1的图象与x轴交于点A,与y轴交于点B,与反比例函数图象的一个交点为M(﹣2m).

1)求反比例函数的解析式;

2)当y2y1时,求x的取值范围;

3)求点B到直线OM的距离.

 

查看答案

如图,ABC是等腰三角形,ABAC,以AC为直径的⊙OBC交于DDEAB,垂足为点EED的延长线与AC的延长线交于点F

1)求证:DE是⊙O的切线;

2)若⊙O的半径为2BE1,求cosA的值.

 

查看答案

小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.

1)求小张骑自行车的速度;

2)求小张停留后再出发时yx之间的函数表达式;

3)求小张与小李相遇时x的值.

 

查看答案

如图,旗杆AB的顶端B在夕阳的余辉下落在一个斜坡上的点D处,某校数学课外兴趣小组的同学正在测量旗杆的高度,在旗杆的底部A处测得点D的仰角为15°AC10米,又测得∠BDA45°.已知斜坡CD的坡度为i1,求旗杆AB的高度(1.73,结果精确到个位)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.