如图①,已知AB∥CD,点E、F分别是AB、CD上的点,点P是两平行线之间的一点,设∠AEP=α,∠PFC=β,在图①中,过点E作射线EH交CD于点N,作射线FI,延长PF到G,使得PE、FG分别平分∠AEH、∠DFI,得到图②.
(1)在图①中,当α=20°,β=50°时,求∠EPF的度数;
(2)在(1)的条件下,求图②中∠END与∠CFI的度数;
(3)在图②中,当FI∥EH时,请求出α与β的数量关系.
(1)填写下表,观察被开方数a的小数点与算术平方根的小数点的移动规律:
a | 0.0016 | 0.16 | 16 | 1600 |
|
|
|
|
(2)根据你发现的规律填空:
①已知:=2.683 ,则=_________, =________
②已知: =6.164,若=61.64, 则x=____________,
(3)直接写出与a的大小.
如图,已知AD⊥EF,CE⊥EF,∠2+∠3=180°.
(1)请说明∠1=∠BDC;
(2)若∠1=70°,DA平分∠BDC,试求∠FAB的度数.
已知2a-1的平方根是±3,3a+b-9的立方根是2,c是的整数部分,求a+2b+c的平方根。
已知:如图, AB⊥CD于点O,∠1=∠2,OE平分∠BOF,∠EOB=55°,求∠GOF和∠DOG的度数.
如图,EF∥AD,∠1=∠2,∠BAC=70°,将求∠AGD的过程填写完整;
【解析】
∵EF∥AD
∴ =∠3 (两直线平行,同位角相等)
又∵∠1=∠2
∴∠1=∠3 (__________________)
∴ ∥DG (__________________________)
∴∠BAC+______=180°(_________________________)
∵∠BAC=70°
∴∠AGD=_______.