如图是一个由5个相同的正方体组成的立体图形,它的三视图是( )
A. B.
C. D.
sin45°的值等于( )
A. B. C. D. 1
如图,在Rt△ABC中,∠ACB=90°,AB=5,过点B作BD⊥AB,点C,D都在AB上方,AD交△BCD的外接圆⊙O于点E.
(1)求证:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的长.
②若△BDC为直角三角形,求所有满足条件的BD的长.
(3)若BC=EC= ,则= .(直接写出结果即可)
已知抛物线y=x2+mx+n的图象经过点(﹣3,0),点(1,0)
(1)求抛物线解析式;(2)求抛物线的对称轴和顶点坐标.
已知,AB为⊙O的直径,弦CD⊥AB于点E,在CD的延长线上取一点P,PG与⊙O相切于点G,连接AG交CD于点F.
(Ⅰ)如图①,若∠A=20°,求∠GFP和∠AGP的大小;
(Ⅱ)如图②,若E为半径OA的中点,DG∥AB,且OA=2,求PF的长.
车辆经过润扬大桥收费站时,4个收费通道 A.B、C、D中,可随机选择其中的一个通过.
(1)一辆车经过此收费站时,选择 A通道通过的概率是 ;
(2)求两辆车经过此收费站时,选择不同通道通过的概率.