不等式x+1<2的解为( )
A. B. C. D.
在直角坐标系中,点A(-6,5)位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
已知二次函数的最大值为4,且该抛物线与轴的交点为,顶点为.
(1)求该二次函数的解析式及点,的坐标;
(2)点是轴上的动点,
①求的最大值及对应的点的坐标;
②设是轴上的动点,若线段与函数的图像只有一个公共点,求的取值范围.
如图,四边形AOBC是正方形,点C的坐标是(4,0).
(Ⅰ)正方形AOBC的边长为 ,点A的坐标是 .
(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;
(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:
型号 | 载客量 | 租金单价 |
A | 30人/辆 | 380元/辆 |
B | 20人/辆 | 280元/辆 |
注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.
(Ⅰ)求y与x的函数解析式,请直接写出x的取值范围;
(Ⅱ)若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?
如图,从一架水平飞行的无人机的尾端点测得正前方的桥的左端点俯角为,且,无人机的飞行高度米,桥的长度为1255米.
(1)求点到桥左端点的距离;
(2)若从无人机前端点测得正前方的桥的右端点的俯角为,求这架无人机的长度.