下列运算正确的是( )
A. a3+a4=a7 B. a3÷a4=a C. 2a3•a4=2a7 D. (2a4)3=8a7
的相反数是
A. 2 B. C. D.
如图,直线与轴,轴分别交于点,经过点的抛物线与轴的另一个交点为点,点是抛物线上一点,过点作轴于点,连接,设点的横坐标为.
求抛物线的解析式;
当点在第三象限,设的面积为,求与的函数关系式,并求出的最大值及此时点的坐标;
连接,若,请直接写出此时点的坐标.
尝试探究
如图-,在△ABC中,∠C=90°,∠A=30°,点E、F分别是BC、AC边上的点,且EF//BC.
的值为 ;直线与直线的位置关系为 ;
类比延伸
如图,若将图中的绕点顺时针旋转,连接,则在旋转的过程中,请判断的值及直线与直线的位置关系,并说明理由;
拓展运用
若,在旋转过程中,当三点在同一直线上时,请直接写出此时线段的长.
某种水果进价为每千克15元,销售中发现,销售单价定为20元时,日销售量为50千克;当销售单价每上涨1元,日销售量就减少5千克.设销售单价为(元),每天的销售量为(千克),每天获利为(元).
(1)求与之间的函数关系式;
(2)求与之间的函数关系式;该水果定价为每千克多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果商家规定这种水果每天的销售量不低于40千克,求商家每天销售利润的最大值是多少元?
在平面直角坐标系中,点是坐标原点,矩形的边分别在轴和轴上,,点是的四等分点,且,反比例函数的图像经过点,交于点,连接.
求反比例函数的解析式;
求的面积.