图①、图②均为4×4的正方形网格,线段AB、BC的端点均在网点上.按要求在图①、图②中以AB和BC为边各画一个四边形ABCD.
要求:四边形ABCD的顶点D在格点上,且有两个角相等(一组或两组角相等均可);所画的两个四边形不全等.
某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°,求此时轮船与小岛P的距离.
某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.
(1)求购买一台电子白板和一台台式电脑各需多少元?
(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?
在“2010年重庆春季房交会”期间,某房地产开发企业推出A、B、C、D四种类型的住房共1000套进行展销,C型号住房销售的成交率为50%,其它型号住房的销售情况绘制在图1和图2两幅尚不完整的统计图中.
(1)参加展销的D型号住房套数为 套.
(2)请你将图2的统计图补充完整.
(3)若由2套A型号住房(用A1,A2表示),1套B型号住房(用B表示),1套C型号住房(用C表示)组成特价房源,并从中抽出2套住房,将这两套住房的全部销售款捐给青海玉树地震灾区,请用树状图或列表法求出2套住房均是A型号的概率.
如图,一次函数y=kx+b的图象与反比例函数y=的图象交于二象限内的A点和四象限内的B点,与x轴将于点C,连接AO,已知AO=2,tan∠AOC=,点B的坐标为(a,﹣4).
(1)求此反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值小于反比例函数的值的x的取值范围;
(3)求△AOB的面积.
如图,AB=CD,AE=CF,E、F是BD上两点,且BF=DE.求证:AD=BC.