满分5 > 初中数学试题 >

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下...

邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形.如图,ABCD中,若AB=1BC=2,则ABCD1阶准菱形.

1)判断与推理:

①邻边长分别为23的平行四边形是          阶准菱形;

②小明为了剪去一个菱形,进行了如下操作:如图,把ABCD沿BE折叠(点EAD上),使点A落在BC边上的点F,得到四边形ABFE.请证明四边形ABFE是菱形.

2)操作、探究与计算:

①已知ABCD的邻边长分别为1aa1),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知ABCD的邻边长分别为abab),满足a=6b+rb=5r,请写出ABCD是几阶准菱形.

 

(1)①2;②证明见解析;(2)①或或或4②10. 【解析】 (1)①根据邻边长分别为2和3的平行四边形经过两次操作,即可得出所剩四边形是菱形,即可得出答案; ②根据平行四边形的性质得出AE∥BF,进而得出AE=BF,即可得出答案; (2)①利用3阶准菱形的定义,即可得出答案; ②根据a=6b+r,b=5r,用r表示出各边长,进而利用图形得出▱ABCD是几阶准菱形. (1)①利用邻边长分别为2和3的平行四边形经过两次操作,所剩四边形是边长为1的菱形, 故邻边长分别为2和3的平行四边形是2阶准菱形; ②由折叠知:∠ABE=∠FBE,AB=BF, ∵四边形ABCD是平行四边形, ∴AE∥BF, ∴∠AEB=∠FBE, ∴∠AEB=∠ABE, ∴AE=AB, ∴AE=BF, ∴四边形ABFE是平行四边形, ∴四边形ABFE是菱形; (2)①如图所示: , ②答:10阶菱形, ∵a=6b+r,b=5r, ∴a=6×5r+r=31r; 如图所示: 故▱ABCD是10阶准菱形.
复制答案
考点分析:
相关试题推荐

如图,在等边△ABC中,BC8cm,射线AGBC,点E从点A出发沿射线AG1cm/s的速度运动,同时点F从点B出发沿射线BC2cm/s的速度运动,设运动时间为ts).

1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF

2)①当t       时,以AFCE为顶点的四边形是平行四边形(直接写出结果);

②当t       时,四边形ACFE是菱形.

 

查看答案

(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.

1)该商家购进的第一批衬衫是多少件?

2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?

 

查看答案

如图,四边形ABCD是平行四边形,EF是对角线AC上的两点,1=2

1)求证:AE=CF

2)求证:四边形EBFD是平行四边形.

 

查看答案

江都区教育行政部门为了了解八年级学生每学期参加综合实践活动的情况,随机调查了部分学生,并将他们一学期参加综合实践活动的天数进行统计,绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:

1)扇形统计图中a=____ ___,参加调查的八年级学生人数为___ __人;

2)根据图中信息,补全条形统计图;扇形统计图中活动时间为4的扇形所对应的圆心角的度数为____ ___

3)如果全市共有八年级学生6000人,请你估计活动时间不少于4的大约有多少人.

 

查看答案

如图,方格纸中每个小正方形的边长为1,△ABC的顶点均在格点上. 请在所给直角坐标系中按要求画图和解答下列问题:

(1)将△ABC沿x轴翻折后再沿x轴向右平移1个单位,在图中画出平移后的△A1B1C1,若△ABC内有一点P(m,n),则经过上述变换后点P的坐标为___ __.

(2)作出△ABC关于坐标原点O成中心对称的△A2B2C2

(3) 若将△ABC绕某点逆时针旋转90°后,其对应点分别为A3(2,1),B3(4,0),C3(3,-2),则旋转中心坐标为___ _.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.