如图,点O在直线AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先将△ODE一边OE与OC重合,然后绕点O顺时针方向旋转,当OE与OB重合时停止旋转.
(1)当OD在OA与OC之间,且∠COD=20°时,则∠AOE=______;
(2)试探索:在△ODE旋转过程中,∠AOD与∠COE大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;
(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.
为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.
若某户居民月份用水,则应收水费:
元.
(1)若该户居民月份用水,
则应收水费______元;
(2)若该户居民、月份共用水(月份用水量超过月份),共交水费元,则该户居民,月份各用水多少立方米?
如图,直线AB、CD、EF相交于点O,OG⊥CD,∠BOD=32°.
(1)求∠AOG的度数;
(2)如果OC是∠AOE的平分线,那么OG是∠AOF的平分线吗?请说明理由.
阅读下面一段文字:
问题:0.能用分数表示吗?
探求:步骤①设x=0.,
步骤②10x=10×0.,
步骤③10x=8.,
步骤④10x=8+0.,
步骤⑤10x=8+x,
步骤⑥9x=8,
步骤⑦x=.
根据你对这段文字的理解,回答下列问题:
(1)步骤①到步骤②的依据是______;
(2)仿照上述探求过程,请你尝试把0.表示成分数的形式.
某小组计划做一批“中华结”,如果每人做6个,那么比计划多做了8个;如果每人做4个,那么比计划少做了42个.请你根据以上信息,提出一个用一元一次方程解决的问题,并写出解答过程.
如图,点P是∠AOB的边OB上的一点.
(1)过点P画OB的垂线,交OA于点C;
(2)过点P画OA的垂线,垂足为H;
(3)线段PH的长度是点P到______的距离,______是点C到直线OB的距离,线段PC、PH、OC这三条线段大小关系是______(用“<”号连接).