在平面直角坐标系中,点(一6,5)位于( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
如图,在平面直角坐标系中,直线AB:y=﹣x+与直线AC:y=+8交于点A,直线AB分别交x轴、y轴于B、E,直线AC分别交x轴、y轴于点C、D.
(1)求点A的坐标;
(2)在y轴左侧作直线FG∥y轴,分别交直线AB、直线AC于点F、G,当FG=3DE时,过点G作直线GH⊥y轴于点H,在直线GH上找一点P,使|PF﹣PO|的值最大,求出P点的坐标及|PF﹣PO|的最大值;
(3)将一个45°角的顶点Q放在x轴上,使其角的一边经过A点,另一边交直线AC于点R,当△AQR为等腰直角三角形时,请直接写出点R的坐标.
一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=,在m′的所有可能的情况中,当|b+2c﹣a﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.
(1)最大的四位“半期数”为 ;“半期数”3247的“伴随数”是 .
(2)已知四位数P=是“半期数”,三位数Q=,且441Q﹣4P=88991,求F(P')的最大值.
如图,Rt△ABC中,∠ACB=90°,CD⊥AB于E,CD=AB,DA、BC延长线交于F.
(1)若AC=12,∠ABC=30°,求DE的长;
(2)若BC=2AC,求证:DA=FC.
今年“五一节”前,某商场用60万元购进某种商品,该商品有甲、乙两种包装共500件,其中每件甲包装中有75个A种产品,每个A产品的成本为12元;每件乙包装中有100个B产品,每个B种产品的成本为14元.商场将A产品标价定为每个18元,B产品标价定为每个20元.
(1)甲、乙两种包装的产品各有多少件?
(2)“五一节”商场促销,将A产品按原定标价打9折销售,B种产品按原定标价打8.5折销售,“五一节”期间该产品全部卖完,该商场销售该商品共获利多少元?
为了了解某学校八年级学生每周平均体育锻炼时间的情况,随机抽查了该年级的部分学生,对其每周锻炼时间进行统计,根据统计数据绘制成图1和图2两个不完整的统计图.请你根据统计图提供的信息,回答下列问题:
(1)本次共抽取了学生 人,并请将图1条形统计图补充完整;
(2)这组数据的中位数是 ,求出这组数据的平均数;
(3)若八年级有学生1800人,请你估计体育锻炼时间为3小时的学生有多少人?