甲、乙两人进行射击比赛,在相同条件下各射击10次,他们的平均成绩一样,而他们的方差分别是S甲2=1.8,S乙2=0.7,则成绩比较稳定的是( )
A. 甲稳定 B. 乙稳定 C. 一样稳定 D. 无法比较
如图所示的图案中,有2条对称轴的轴对称图形是( )
A. B. C. D.
下列运算正确的是( )
A. 2a+3a=5a2 B. (a3)3=a9 C. a2•a4=a8 D. a6÷a3=a2
绝对值为2的数是( )
A. 2 B. ﹣2 C. ±2 D.
问题的提出:
如果点P是锐角△ABC内一动点,如何确定一个位置,使点P到△ABC的三顶点的距离之和PA+PB+PC的值为最小?
问题的转化:
(1)把ΔAPC绕点A逆时针旋转60度得到连接这样就把确定PA+PB+PC的最小值的问题转化成确定的最小值的问题了,请你利用如图证明:
;
问题的解决:
(2)当点P到锐角△ABC的三项点的距离之和PA+PB+PC的值为最小时,请你用一定的数量关系刻画此时的点P的位置:_____________________________;
问题的延伸:
(3)如图是有一个锐角为30°的直角三角形,如果斜边为2,点P是这个三角形内一动点,请你利用以上方法,求点P到这个三角形各顶点的距离之和的最小值.
下面是小东设计的“作△ABC中BC边上的高线”的尺规作图过程.
已知:△ABC.
求作:△ABC中BC边上的高线AD.
作法:如图,
①以点B为圆心,BA的长为半径作弧,以点C为圆心,CA的长为半径作弧,两弧在BC下方交于点E;
②连接AE交BC于点D.
所以线段AD是△ABC中BC边上的高线.
根据小东设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵ =BA, =CA,
∴点B,C分别在线段AE的垂直平分线上( )(填推理的依据).
∴BC垂直平分线段AE.
∴线段AD是△ABC中BC边上的高线.