满分5 > 初中数学试题 >

如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的...

如图,直线AB和抛物线的交点是A0,﹣3),B59),已知抛物线的顶点D的横坐标是2

1)求抛物线的解析式及顶点坐标;

2)在x轴上是否存在一点C,与AB组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;

3)在直线AB的下方抛物线上找一点P,连接PAPB使得△PAB的面积最大,并求出这个最大值.

 

(1),顶点D(2,);(2)C(,0)或(,0)或(,0);(3) 【解析】 (1)抛物线的顶点D的横坐标是2,则x2,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入函数表达式,即可求解; (2)分AB=AC、AB=BC、AC=BC,三种情况求解即可; (3)由S△PAB•PH•xB,即可求解. (1)抛物线的顶点D的横坐标是2,则x2①,抛物线过A(0,﹣3),则:函数的表达式为:y=ax2+bx﹣3,把B点坐标代入上式得:9=25a+5b﹣3②,联立①、②解得:a,b,c=﹣3,∴抛物线的解析式为:yx2x﹣3. 当x=2时,y,即顶点D的坐标为(2,); (2)A(0,﹣3),B(5,9),则AB=13,设点C坐标(m,0),分三种情况讨论: ①当AB=AC时,则:(m)2+(﹣3)2=132,解得:m=±4,即点C坐标为:(4,0)或(﹣4,0); ②当AB=BC时,则:(5﹣m)2+92=132,解得:m=5,即:点C坐标为(5,0)或(5﹣2,0); ③当AC=BC时,则:5﹣m)2+92=(m)2+(﹣3)2,解得:m=,则点C坐标为(,0). 综上所述:存在,点C的坐标为:(±4,0)或(5,0)或(,0); (3)过点P作y轴的平行线交AB于点H.设直线AB的表达式为y=kx﹣3,把点B坐标代入上式,9=5k﹣3,则k,故函数的表达式为:yx﹣3,设点P坐标为(m,m2m﹣3),则点H坐标为(m,m﹣3),S△PAB•PH•xB(m2+12m)=-6m2+30m=,当m=时,S△PAB取得最大值为:. 答:△PAB的面积最大值为.
复制答案
考点分析:
相关试题推荐

如图,ABC 内接于OB60°CD O 的直径,点 P CD 延长线上的一点,且 APAC

1    求证:PA O 的切线;

2    AB4+BC2 ,求O 的半径.

 

查看答案

如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABCACF,弦DEABH,交ACG

①求证:AGGD

②当∠ABC满足什么条件时,DFG是等边三角形?

③若AB10sinABD,求BC的长.

 

查看答案

在一个红色不透明的盒子中放有四张分别写有数字1234的红色卡片,在一个蓝色不透明的盒子中放有三张分别写有数字123的蓝色卡片,卡片除颜色和数字外完全相同.

1)从红盒中任意抽取一张红色卡片,从蓝盒中任意抽取一张蓝色卡片,用列举法(树形图或列表法)表示所有的可能情况;

2)求两张卡片上写有相同数字的概率.

 

查看答案

已知二次函数y2x2+4x+k1

1)当二次函数的图象与x轴有交点时,求k的取值范围;

2)若Ax10)与Bx20)是二次函数图象上的两个点,且当xx1+x2时,y=﹣6,求二次函数的解析式,并在所提供的坐标系中画出大致图象;

3)在(2)的条件下,将抛物线在x轴下方的部分沿x轴翻折,图象其余部分保持不变,得到一个新的图象,当直线yx+mm3)与新图象有两个公共点,且m为整数时,求m的值.

 

查看答案

某水果公司以2元/千克的成本购进1000千克柑橘,销售人员从柑橘中抽取若干柑橘统计损坏情况,结果如下表:

柑橘总质量

损坏柑橘质量

柑橘损坏的频率

50

5.5

0.110

100

10.5

0.105

150

15.15

0.101

200

19.42

0.097

250

24.25

0.097

300

30.93

0.130

350

35.32

0.101

400

39.24

0.098

450

44.57

0.099

500

51.42

0.103

 

1)请根据表格中的数据,估计这批柑橘损坏的概率(精确到0.01);

2)公司希望这批柑橘能够至少获利500元,则毎干克最低定价为多少元?(精确到0.1元).

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.