为引导学生广泛阅读文学名著,某校在七年级、八年级开展了读书知识竞赛. 该校七、八年级各有学生400人, 各随机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(分),并对数据进行整理、描述和分析. 下面给出了部分信息.
七年级:74 97 96 89 98 74 69 76 72 78
99 72 97 76 99 74 99 73 98 74
八年级:76 88 93 65 78 94 89 68 95 50
89 88 89 89 77 94 87 88 92 91

平均数、中位数、众数如下表所示:

根据以上信息,回答下列问题:
(1)a= ,m= ,n= ;
(2)你认为哪个年级读书知识竞赛的总体成绩较好,说明理由(至少从两个不同的角度说明推断的合理性);
(3)该校对读书知识竞赛成绩不少于80分的学生授予“阅读小能手”称号,请你估计该校七、八年级所有学生中获得“阅读小能手”称号的大约有 人.
已知一次函数的图象与反比例函数![]()
(k ≠ 0) 在第一象限内的图象交于点A(1,m).
(1) 求反比例函数的表达式;
(2) 点B在反比例函数的图象上, 且点B的横坐标为2. 若在x轴上存在一点M,使MA+MB的值最小,求点M的坐标.

如图,在△ABC 中,AB = AC,以AB为直径的⊙O 分 别交AC,BC于点 D,E,过点B作⊙O的切线, 交 AC的延长线于点F.
(1) 求证:∠CBF =
∠CAB;
(2) 若CD = 2,
,求FC的长.

如图,矩形ABCD 中,对角线AC,BD交于点O,以 AD,OD为邻边作平行四边形ADOE,连接BE.
(1) 求证:四边形AOBE是菱形;
(2) 若∠EAO+∠DCO=180°,DC=2,求四边形ADOE的面积.

关于的一元二次方程![]()
有两个实数根.
(1)求的取值范围;![]()
(2)若为正整数,求此时方程的根.![]()
解不等式组:![]()
