某汽车制造厂开发一款新式电动汽车,计划一年生产安装360辆.由于抽调不出足够的熟练工来完成新式电动汽车的安装,工厂决定招聘一些新工人.他们经过培训后上岗,也能独立进行电动汽车的安装.生产开始后,调研部门发现:1名熟练和2名新工人每月可安装12辆电动汽车;2名熟练工和3名新工人每月可安装21辆电动汽车.
(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?
(2)如果工厂招聘n(0<n<10)名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?
(3)在(2)的条件下,工厂给安装电动汽车的每名熟练工每月发2000元的工资,给每名新工人每月发1200元工资,那么工厂应招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额W(元)尽可能的少?
我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a>表示大于a的最小整数,例如:<2.5> =3,<4>=5,<-1.5> =-1.解决下列问题:
(1)[-4.5]=________,<3.5> =________;
(2)若[x]=2,<y>= -1,求2x+y的取值范围.
试根据图中信息,解答下列问题:
(1)购买8根跳绳需________元,购买14根跳绳需________元;
(2)小红比小明多买2根,付款时小红反而比小明少5元,你认为有这种可能吗?若有,请求小红购买跳绳的根数;若没有,请说明理由.
已知关于x、y的方程组和的解相同,求(a+b)2019的值.
不等式组的解集是_______
解不等式组并把解集在数轴上表示出来: