满分5 > 初中数学试题 >

如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,OF⊥AB,交AC于点F,点...

如图,ABC是⊙O的内接三角形,AB是⊙O的直径,OFAB,交AC于点F,点EAB的延长线上,射线EM经过点C,且∠ACE+AFO=180°.

(1)求证:EM是⊙O的切线;

(2)若∠A=E,BC=,求阴影部分的面积.(结果保留和根号).

 

(1)详见解析;(2); 【解析】 (1)连接OC,根据垂直的定义得到∠AOF=90°,根据三角形的内角和得到∠ACE=90°+∠A,根据等腰三角形的性质得到∠OCE=90°,得到OC⊥CE,于是得到结论; (2)根据圆周角定理得到∠ACB=90°,推出∠ACO=∠BCE,得到△BOC是等边三角形,根据扇形和三角形的面积公式即可得到结论. :(1)连接OC, ∵OF⊥AB, ∴∠AOF=90°, ∴∠A+∠AFO+90°=180°, ∵∠ACE+∠AFO=180°, ∴∠ACE=90°+∠A, ∵OA=OC, ∴∠A=∠ACO, ∴∠ACE=90°+∠ACO=∠ACO+∠OCE, ∴∠OCE=90°, ∴OC⊥CE, ∴EM是⊙O的切线; (2)∵AB是⊙O的直径, ∴∠ACB=90°, ∴∠ACO+∠BCO=∠BCE+∠BCO=90°, ∴∠ACO=∠BCE, ∵∠A=∠E, ∴∠A=∠ACO=∠BCE=∠E, ∴∠ABC=∠BCO+∠E=2∠A, ∴∠A=30°, ∴∠BOC=60°, ∴△BOC是等边三角形, ∴OB=BC=, ∴阴影部分的面积=,
复制答案
考点分析:
相关试题推荐

如图,在平面直角坐标系中,一次函数的图象经过点,与反比例函数的图象交于.

(1)求一次函数和反比例函数的表达式;

(2)设是直线上一点,过轴,交反比例函数的图象于点,若为顶点的四边形为平行四边形,求点的坐标.

 

查看答案

雾霾天气严重影响市民的生活质量。在今年寒假期间,某校九年级一班的综合实践小组学生对“雾霾天气的主要成因”随机调查了所在城市部分市民,并对调查结果进行了整理,绘制了下图所示的不完整的统计图表:

组别

雾霾天气的主要成因

百分比

A

工业污染

45%

B

汽车尾气排放

C

炉烟气排放

15%

D

其他(滥砍滥伐等)

 

请根据统计图表回答下列问题:

1)本次被调查的市民共有多少人?并求的值;

2)请补全条形统计图,并计算扇形统计图中扇形区域所对应的圆心角的度数;

3)若该市有100万人口,请估计市民认为“工业污染和汽车尾气排放是雾霾天气主要成因”的人数.

 

查看答案

先化简,再求值:,其中

 

查看答案

如图,四边形ABCD是菱形,AB=2,∠ABC=30°,点E是射线DA上一动点,把△CDE沿CE折叠,其中点D的对应点为点D′,若CD′垂直于菱形ABCD的边时,则DE的长为_____

 

查看答案

如图①,在正方形中,点的中点,点是对角线上一动点,设的长度为的长度和为,图②是关于的函数图象,则图象上最低点的坐标为_______.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.