满分5 > 初中数学试题 >

如图,四边形ABCD是⊙O的内接四边形,AC为直径,,DE⊥BC,垂足为E. (...

如图,四边形ABCDO的内接四边形,AC为直径,DEBC,垂足为E

1)判断直线EDO的位置关系,并说明理由;

2)若CE=1AC=4,求阴影部分的面积.

 

(1)与相切.理由见解析;(2). 【解析】 (1)连结OD,如图,根据圆周角定理,由得到∠BAD=∠ACD,再根据圆内接四边形的性质得∠DCE=∠BAD,所以∠ACD=∠DCE;利用内错角相等证明OD∥BC,而DE⊥BC,则OD⊥DE,于是根据切线的判定定理可得DE为⊙O的切线; (2)作OH⊥BC于H,易得四边形ODEH为矩形,所以OD=EH=2,则CH=HE﹣CE=1,于是有∠HOC=30°,得到∠COD=60°,然后根据扇形面积公式、等边三角形的面积公式和阴影部分的面积=S扇形OCD﹣S△OCD进行计算即可. (1)直线ED与⊙O相切.理由如下: 连结OD,如图,∵,∴∠BAD=∠ACD. ∵∠DCE=∠BAD,∴∠ACD=∠DCE. ∵OC=OD,∴∠OCD=∠ODC,而∠OCD=∠DCE,∴∠DCE=∠ODC,∴OD∥BC. ∵DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线; (2)作OH⊥BC于H,则四边形ODEH为矩形,∴OD=EH. ∵CE=1,AC=4,∴OC=OD=2,∴CH=HE﹣CE=2﹣1=1.在Rt△OHC中,∵OC=2,CH=1,∠OHC=90°,∠HOC=30°,∴∠COD=60°,∴阴影部分的面积=S扇形OCD﹣S△OCD •22 π.
复制答案
考点分析:
相关试题推荐

甲、乙、丙3人聚会,每人带了一件礼物,3件礼物从外盒包装看完全相同,里面的东西只有颜色不同,将3件礼物放在一起.

1)甲从中随机抽取一件,求甲抽到不是自己带来的礼物的概率;

2)每人从中随机抽取一件,求甲、乙、丙3人抽到的都不是自己带来的礼物的概率.

 

查看答案

某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20时,按2元/计费;月用水量超过20时,其中的20仍按2元/收费,超过部分按元/计费.设每户家庭用用水量为时,应交水费元.

(1)分别求出的函数表达式;

(2)小明家第二季度交纳水费的情况如下:

月份

四月份

五月份

六月份

交费金额

30元

34元

42.6元

小明家这个季度共用水多少立方米?

 

查看答案

如图,河流的两岸PQMN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MNA处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57cos35°≈0.82tan35°≈0.70sin70°≈0.94cos70°≈0.34tan70°≈2.75

 

查看答案

中学生上网现象越来越受到社会的关注,小记者小慧随机调查了某校若干学生和家长对上网现象的看法,制作了如下的统计图①和②。请根据相关信息,解答或补全下列问题。

学生及家长对中学生上网的态度统计图    家长对中学生上网的态度统计图

       

1)补全图①;

2)求图②中表示家长“赞成”的圆心角的度数;

3)该校共有1600名学生,请你估计这所中学的所有学生中,对上网持“反对”态度的有多少名?

 

查看答案

如图,四边形ABCD是菱形,CE⊥ABAB的延长线于点ECF⊥ADAD的延长线于点F,求证:DF=BE

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.