满分5 > 初中数学试题 >

如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°...

如图,正方形ABCD的边长为4,点EF分别在边ABAD上,且∠ECF45°,CF的延长线交BA的延长线于点GCE的延长线交DA的延长线于点H,连接ACEFGH

(1)填空:∠AHC     ACG(填“>”或“<”或“=”)

(2)线段ACAGAH什么关系?请说明理由;

(3)AEm

AGH的面积S有变化吗?如果变化.请求出Sm的函数关系式;如果不变化,请求出定值.

请直接写出使△CGH是等腰三角形的m值.

 

(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为或2或8﹣4.. 【解析】 (1)证明∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°,即可推出∠AHC=∠ACG; (2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题; (3)①△AGH的面积不变.理由三角形的面积公式计算即可; ②分三种情形分别求解即可解决问题. (1)∵四边形ABCD是正方形, ∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=45°, ∴AC=, ∵∠DAC=∠AHC+∠ACH=45°,∠ACH+∠ACG=45°, ∴∠AHC=∠ACG. 故答案为=. (2)结论:AC2=AG•AH. 理由:∵∠AHC=∠ACG,∠CAH=∠CAG=135°, ∴△AHC∽△ACG, ∴, ∴AC2=AG•AH. (3)①△AGH的面积不变. 理由:∵S△AGH=•AH•AG=AC2=×(4)2=16. ∴△AGH的面积为16. ②如图1中,当GC=GH时,易证△AHG≌△BGC, 可得AG=BC=4,AH=BG=8, ∵BC∥AH, ∴, ∴AE=AB=. 如图2中,当CH=HG时, 易证AH=BC=4, ∵BC∥AH, ∴=1, ∴AE=BE=2. 如图3中,当CG=CH时,易证∠ECB=∠DCF=22.5. 在BC上取一点M,使得BM=BE, ∴∠BME=∠BEM=45°, ∵∠BME=∠MCE+∠MEC, ∴∠MCE=∠MEC=22.5°, ∴CM=EM,设BM=BE=m,则CM=EMm, ∴m+m=4, ∴m=4(﹣1), ∴AE=4﹣4(﹣1)=8﹣4, 综上所述,满足条件的m的值为或2或8﹣4.
复制答案
考点分析:
相关试题推荐

一张正方形纸的内部被针扎了2010个孔,这些孔和正方形的顶点之中的任何3点都不共线.作若干条互不相交的线段,它们的端点都是这些孔或正方形的顶点,这些线段将正方形分割成一些三角形,并且在这些三角形的内部和边上都不再有小孔.请问一共作了多少条线段?共得到了多少个三角形?

 

查看答案

某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.

1)求yx的函数关系式,并直接写出自变量x的取值范围;

2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?

3)每件商品的售价定为多少元时,每周的利润恰好是2145元?

 

查看答案

如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.

(1)求证:△ADE≌△BCF;

(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.

 

查看答案

为迎接北京2022年冬奥会,某工艺厂准备生产奥运会标志与奥运会吉祥物,该厂主要用甲、乙两种原料.已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完.

1)求该厂能生产奥运会标志和奥运会吉祥物各多少套?

2)如果奥运会标志的成本为16元,奥运会吉祥物的成本为15元,若东营客商购进奥运会标志和奥运会吉祥物共250件进行试销,其中奥运会标志的件数不大于奥运会吉祥物的件数,且不小于80件,已知奥运会标志的售价为24/件,奥运会吉祥物的售价为22/件,且全部售出,设购进奥运会标志m件,求该客商销售这批商品的利润ym之间的函数关系式,并写出m的取值范围;

3)在(2)的条件下,东营客商决定在试销活动中毎售出一件奥运会标志,就从一件奥运会标志的利润中捐献慈善资金a元,求该客商售完所有商品并捐献资金后获得的最大收益.

 

查看答案

如图,一段河坝的断面为梯形ABCD,试根据图中数据,求出坡角和坝底宽AD.(结果保留根号)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.