如图1,抛物线 经过 , 两点,与 轴相交于点 ,连接 .点 为抛物线上一动点,过点 作 轴的垂线 ,交直线 于点 ,交 轴于点 .
Ⅰ 求抛物线的表达式;
Ⅱ 当 位于 轴右边的抛物线上运动时,过点 作 直线 , 为垂足.当点 运动到何处时,以 , , 为顶点的三角形与 相似?并求出此时点 的坐标;
Ⅲ 如图2,当点 在位于直线 上方的抛物线上运动时,连接 , .请问 的面积 能否取得最大值?若能,请求出最大面积 ,并求出此时点 的坐标;若不能,请说明理由.
如图,在中,,平分,交于点,点在上,经过两点,交于点,交于点.
(1)求证:是的切线;
(2)若的半径是,是弧的中点,求阴影部分的面积(结果保留和根号).
如图,在中,点是的中点,点是线段的延长线上的一动点,连接,过点作的平行线,与线段的延长线交于点,连接、.
求证:四边形是平行四边形.
若,,则在点的运动过程中:
①当________时,四边形是矩形,试说明理由;
②当________时,四边形是菱形.
如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
(1)求反比例函数和一次函数的表达式;
(2)求当时自变量的取值范围.
某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,则两人同队,否则互为反方队员.
(1)若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;
(2)请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率.
如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米米,篮板顶端F点到篮框D的距离FD=1.35米,篮板底部支架HF与支架AF所成的角∠FHE=60°,求篮框D到地面的距离(精确到0.01米).
(参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,,)