满分5 > 初中数学试题 >

(问题情境) 如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中...

(问题情境)

如图1,四边形ABCD是正方形,MBC边上的一点,ECD边的中点,AE平分∠DAM

(探究展示)

(1)证明:AM=AD+MC

(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.

(拓展延伸)

(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)(2)中的结论是否成立?请分别作出判断,不需要证明.

 

(1)证明见解析;(2)AM=DE+BM成立,证明见解析;(3)①结论AM=AD+MC仍然成立;②结论AM=DE+BM不成立. 【解析】 (1)从平行线和中点这两个条件出发,延长AE、BC交于点N,易证△ADE≌△NCE,得到AD=CN,再证明AM=NM即可;(2)过点A作AF⊥AE,交CB的延长线于点F, 易证△ABF≌△ADE,从而证明AM=FM,即可得证;(3)AM=DE+BM需要四边形ABCD是正方形,故不成立,AM=AD+MC仍然成立. (1)延长AE、BC交于点N,如图1(1), ∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC. ∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN. 在△ADE和△NCE中, ∴△ADE≌△NCE(AAS).∴AD=NC.∴MA=MN=NC+MC=AD+MC. (2)AM=DE+BM成立. 证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示. ∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC. ∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE. 在△ABF和△ADE中, ∴△ABF≌△ADE(ASA). ∴BF=DE,∠F=∠AED. ∵AB∥DC, ∴∠AED=∠BAE. ∵∠FAB=∠EAD=∠EAM, ∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM. ∴∠F=∠FAM. ∴AM=FM. ∴AM=FB+BM=DE+BM. (3)①结论AM=AD+MC仍然成立.②结论AM=DE+BM不成立.
复制答案
考点分析:
相关试题推荐

学校与图书馆在同一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达目的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.

 

(1)根据图象信息,当t=________分钟时甲乙两人相遇,甲的速度为________/分钟;

(2)求出线段AB所表示的函数表达式.

 

查看答案

如图,矩形ABCD中,点P是线段AD上的一个动点,OBD的中点,PO的延长线交BCQ

1)求证:OP=OQ

2)若AD=8cmAB=6cm,点P从点A出发,以 的速度向点D 运动(不与D重合).设点P运动的时间为t秒,请用t表示PD的长;

3)当t为何值时,四边形PBQD是菱形?

 

查看答案

小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:

次数

购买数量(件

购买总费用(元

A

B

第一次

2

1

55

第二次

1

3

65

 

根据以上信息解答下列问题:

(1)求A,B两种商品的单价;

(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.

 

查看答案

如图,AE∥BFAC平分∠BAE,交BF于点CBD平分∠ABC,交AE于点D,连接CD

1)求证:四边形ABCD是菱形;

2)若AB=5AC=6,求AEBF之间的距离.

 

查看答案

如图,直线的解析表达式为:y=-3x+3,且与x轴交于点D,直线经过点A,B,直线交于点C.

(1)求点D的坐标;

(2)求直线的解析表达式;

(3)求ADC的面积;

(4)在直线上存在异于点C的另一点P,使得ADP的面积是ADC面积的2倍,请直接写出点P的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.