满分5 > 初中数学试题 >

已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的...

已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

(1)如图1,求证:KEGE

(2)如图2,连接CABG,若∠FGBACH,求证:CAFE

(3)如图3,在(2)的条件下,连接CGAB于点N,若sinEAK,求CN的长.

 

(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3). 【解析】 试题 (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE; (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF; (3)如下图2,作NP⊥AC于P, 由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH, 在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长. 试题解析: (1)如图1,连接OG. ∵EF切⊙O于G, ∴OG⊥EF, ∴∠AGO+∠AGE=90°, ∵CD⊥AB于H, ∴∠AHD=90°, ∴∠OAG=∠AKH=90°, ∵OA=OG, ∴∠AGO=∠OAG, ∴∠AGE=∠AKH, ∵∠EKG=∠AKH, ∴∠EKG=∠AGE, ∴KE=GE. (2)设∠FGB=α, ∵AB是直径, ∴∠AGB=90°, ∴∠AGE=∠EKG=90°﹣α, ∴∠E=180°﹣∠AGE﹣∠EKG=2α, ∵∠FGB=∠ACH, ∴∠ACH=2α, ∴∠ACH=∠E, ∴CA∥FE. (3)作NP⊥AC于P. ∵∠ACH=∠E, ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a, 则CH=,tan∠CAH=, ∵CA∥FE, ∴∠CAK=∠AGE, ∵∠AGE=∠AKH, ∴∠CAK=∠AKH, ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=, ∵AK=, ∴, ∴a=1.AC=5, ∵∠BHD=∠AGB=90°, ∴∠BHD+∠AGB=180°, 在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°, ∴∠ABG+∠HKG=180°, ∵∠AKH+∠HKG=180°, ∴∠AKH=∠ABG, ∵∠ACN=∠ABG, ∴∠AKH=∠ACN, ∴tan∠AKH=tan∠ACN=3, ∵NP⊥AC于P, ∴∠APN=∠CPN=90°, 在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b, 在Rt△CPN中,tan∠ACN==3, ∴CP=4b, ∴AC=AP+CP=13b, ∵AC=5, ∴13b=5, ∴b=, ∴CN===.  
复制答案
考点分析:
相关试题推荐

如图,矩形ABCD中,OACBD的交点,过O点的直线EFAB、CD的延长线分别交于E、F.

(1)证明:△BOE≌△DOF;

(2)当EFAC时,求证四边形AECF是菱形.

 

查看答案

小新家、小华家和书店依次在东风大街同一侧(忽略三者与东风大街的距离).小新小华两人同时各自从家出发沿东风大街匀速步行到书店买书,已知小新到达书店用了20分钟,小华的步行速度是40/分,设小新、小华离小华家的距离分别为y1(米)、y2(米),两人离家后步行的时间为x(分),y1x的函数图象如图所示,根据图象解决下列问题:

(1)小新的速度为_____/分,a=_____;并在图中画出y2x的函数图象

(2)求小新路过小华家后,y1x之间的函数关系式.

(3)直接写出两人离小华家的距离相等时x的值.

 

查看答案

小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,把手AM的仰角α=37°,此时把手端点A、出水口B和点落水点C在同一直线上,洗手盆及水龙头的相关数据如图2.(参考数据:sin37°= ,cos37°= ,tan37°=  

(1)求把手端点ABD的距离; 

(2)CH的长. 

 

查看答案

一个不透明的口袋里装有分别标有汉字的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.

1)若从中任取一个球,球上的汉字刚好是的概率为多少?

2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成道德青县的概率.

 

查看答案

先化简后求值:已知:x=﹣2,求的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.