定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是
A.2 B.3 C.4 D.5
下列图象中,表示y是x的函数的有 ( )
A. 1个 B. 2个 C. 3个 D. 4个
已知点P(a+1,2a-3)关于x轴的对称点在第一象限,则a的取值范围是( )
A. a <-1 B. -1<a < C. -<a<1 D. a>
下面调查中,适合采用全面调查的事件是( ).
A.对全国中学生心理健康现状的调查.
B.对我市食品合格情况的调查.
C.对桂林电视台《桂林板路》收视率的调查.
D.对你所在的班级同学的身高情况的调查.
如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=-x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E
(1)求点D的坐标及直线OP的解析式;
(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标
(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由.
已知△ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE=AD,连接DE,DC,
(1)若点D在线段AB上,且AB=6,AD=2(如图①),求证:DE=DC;并求出此时CD的长;
(2)若点D在线段AB的延长线上,(如图②),此时是否仍有DE=DC?请证明你的结论;
(3)在(2)的条件下,连接AE,若,求CD:AE的值.