下列各曲线中表示y是x的函数的是( )
A. B. C. D.
已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图),易证BM+DN=MN.
(1)当∠MAN绕点A旋转到BM≠DN时(如图),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;
(2)当∠MAN绕点A旋转到如图的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.
求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之”,意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.
例如:求91与56的最大公约数
【解析】
91—56=35
56—35=21
35—21=14
21—14=7
14—7=7
所以,91与56的最大公约数是7
请用以上方法解决下列问题:
(1)求108与45的最大公约数;
(2)求三个数78、104、143的最大公约数.
如图,在矩形ABCD中,对角线AC、BD交于点O,BE平分∠ABC交AC于点F,交AD于点E,且∠DBF=15°,求证:(1)AO=AE; (2)∠FEO的度数.
如图,正比例函数y=kx的图像经过点A,点A在第四象限.过点A做AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为4.5.
(1)求该正比例函数的解析式;
(2)在x轴上是否存在一点P,使△AOP的面积为6?若存在,求点P的坐标;若不存在,请说明理由.
2019年4月12日,在璧山区八塘镇又迎来了一年一度的樱桃节,当天真是热闹非凡,人山人海,为红彤彤的樱桃增添了异样的色彩,八塘镇位于璧山区最北边的一个小镇,地处璧山区和北碚区的交界处,依托在巍峨的缙云山脚下,如图,在缙云山山脚下西端A处与东端B处相距4100米,小军和小明同时分别从A处和B处向山顶C匀速行走.已知山的西端坡角是45°,东端的坡角是30°,小军的行走速度为米/秒.若小明与小军同时到达山顶C处,则小明的行走速度是多少?