如图,在△ABC中,AB=AC,D是BC边的中点,点E,F分别在AD及其延长线上,且CE∥BF,连接BE,CF.
(1)求证:四边形EBFC是菱形;
(2)若BD=4,BE=5,求四边形EBFC的面积.
已知直线l1的函数解析式为y=x+1,且l1与x轴交于点A,直线l2经过点B,D,直线l1,l2交于点C.
(1)求点A的坐标;
(2)求直线l2的解析式;
(3)求S△ABC的面积.
已知m是方程x2﹣x﹣3=0的一个实数根,求代数式(m2﹣m)(m﹣+1)的值.
解一元二次方程:
(1)(2x+1)2=9;
(2)x2+4x﹣2=0;
(3)x2﹣6x+12=0;
(4)3x(2x+1)=4x+2.
正方形,,,, …按如图所示的方式放置.点,,,…和点,,…分别在直线和轴上,已知点,,则点的坐标是 ,点的坐标是 .
已知点A(2,﹣4),直线y=﹣x﹣2与y轴交于点B,在x轴上存在一点P,使得PA+PB的值最小,则点P的坐标为_____.