港珠澳大桥全长约为55000米,将数据55000科学记数法表示为( )
A. 0.55×105 B. 5.5×104 C. 55×103 D. 550×102
如果零上2℃记作+2℃,那么零下3℃记作【 】
A.-3℃ B.-2℃ C.+3℃ D.+2℃
如图,抛物线(其中m>0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,连接AC、BC
(1)直接写出点A、点C的坐标;
(2)当∠ACB=90°时,点D是第一象限抛物线上一动点,连接OD,当OD的长最小时,求点D的坐标;
(3)直线经过点B,与抛物线交于另一点G,点P在y轴上,点Q在抛物线上,以点B、G、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标,若不能,请说明理由.
(4) 当tan∠CBO=时,动点P从点A出发,以每秒2个单位长度的速度沿射线AO方向匀速运动,动点Q从点B出发,以每秒1个单位长度的速度沿射线BO方向匀速运动,P、Q两点同时运动,相遇时停止,在运动过程中,以PQ为一边在x轴上方作正方形PQMN,设运动时间为t秒.不妨设正方形PQMN和△ABC重叠部分的面积为S,请直接写出S关于t的函数表达式.
如图(1),已知点E在正方形ABCD的对角线BD上,EG⊥BC,垂足为点G,EF⊥AB,垂足为点F.
(1)证明与猜想:
①求证:△BEF∽△BDA;
②猜想:的值为 :
(2)探究与证明:
将正方形BFEG绕点B顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段DE与CG之间的数量关系,并说明理由;
(3)拓展与运用:正方形BFEG在旋转过程中,当A,F,G三点在一条直线上时,如图(3)所示,延长BE交CD于点H.若DE=3,EH=,则BC= .
如图,已知Rt△ABC中,∠ACB=90°,以AC为直径的圆O交斜边AB于D.过D作DE⊥AC于E,将△ADE沿直线AB翻折得到△ADF.
(1)求证:DF是⊙O的切线;
(2)若⊙O的半径为10,sin∠FAD=,延长FD交BC于G,求BG的长.
甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶时间x(小时)之间的函数关系如图所示,根据图象提供的信息,解决下列问题:
(1)A,B两城相距 千米;
(2)分别求甲、乙两车离开A城的距离y与x的关系式.
(3)求乙车出发后几小时追上甲车?