满分5 > 初中数学试题 >

如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点...

如图,已知抛物线y=x2+bx+c经过ABC的三个顶点,其中点A(0,1),点B(﹣9,10),ACx轴,点P是直线AC下方抛物线上的动点.

(1)求抛物线的解析式;

(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;

(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

 

(1) 抛物线的解析式为y=x2+2x+1,(2) 四边形AECP的面积的最大值是,点P(﹣,﹣);(3) Q(3,1). 【解析】 (1)把点A,B的坐标代入抛物线的解析式中,求b,c;(2)设P(m,m2−2m+1),根据S四边形AECP=S△AEC+S△APC,把S四边形AECP用含m式子表示,根据二次函数的性质求解;(3)设Q(t,1),分别求出点A,B,C,P的坐标,求出AB,BC,CA;用含t的式子表示出PQ,CQ,判断出∠BAC=∠PCA=45°,则要分两种情况讨论,根据相似三角形的对应边成比例求t. (1)将A(0,1),B(9,10)代入函数解析式得: ×81+9b+c=10,c=1,解得b=−2c=1, 所以抛物线的解析式y=x2−2x+1; (2)∵AC∥x轴,A(0,1), ∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1), ∵点A(0,1),点B(9,10), ∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1), ∴PE=m+1−(m2−2m+1)=−m2+3m. ∵AC⊥PE,AC=6, ∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF =AC⋅(EF+PF)=AC⋅EP =×6(−m2+3m)=−m2+9m. ∵0
复制答案
考点分析:
相关试题推荐

才饮长沙水,又食武昌鱼”.因一代伟人毛泽东的佳句,鄂州武昌鱼名扬天下.某网店专门销售某种品牌真空包装的武昌鱼熟食产品,成本为30/盒,每天销售y()与销售单价x()之间存在一次函数关系,如图所示.

(1)yx之间的函数关系式;

(2)如果规定每天这种武昌鱼熟食产品的销售量不低于240盒,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3 600元,试确定这种武昌鱼熟食产品销售单价的范围.

 

查看答案

如图,⊙O是△ABC的外接圆,AB为直径,∠CAB的平分线交⊙O于点D,过点DBC的平行线分别交ACAB的延长线于点EF.

(1)求证:EF是⊙O的切线;

(2)AC=xAF=y,试用含xy的代数式表示线段AD的长;

(3)BF=2,求AD的长.

 

查看答案

阳春三月,春暖花开,莲花山风景区游人如织,某摄影爱好者正在用无人机进行航拍.如图,在无人机镜头C处,观测风景区A处的俯角为30°B处的俯角为45°,已知AB两点之间的距离为200米,则无人机镜头C处的高度CD为多少?(ABD在同一条直线上,结果保留根号)

 

查看答案

已知关于x的方程.

(1)若方程总有两个实数根,求m的取值范围;

(2)若两个实数根满足,求m的值.

 

查看答案

随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次活动共调查了     人;在扇形统计图中,表示支付宝支付的扇形圆心角的度数为     

(2)将条形统计图补充完整.观察此图,支付方式的众数     ”;

(3)在一次购物中,小明和小亮都想从微信”、“支付宝”、“银行卡三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.

 

查看答案
试题属性
  • 题型:解答题
  • 难度:困难

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.