平面直角坐标系中,与点(2,﹣3)关于原点中心对称的点是( )
A. (﹣3,2) B. (3,﹣2) C. (﹣2,3) D. (2,3)
函数y=中,自变量x的取值范围是( )
A. x≠-1 B. x<-1 C. x>-1 D. x=0
在、、、、、中分式的个数有( )
A. 2个 B. 3个 C. 4个 D. 5个
如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥AB于点E,点D为x轴上动点,连结CD,DE,以CD,DE为边作▱CDEF.设运动时间为t秒.
(1)求点C运动了多少秒时,点E恰好是AB的中点?
(2)当t=4时,若▱CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;
(3)点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,求出满足条件的t的取值范围.
如图①,直线y=与x轴、y轴分别交于点B,C,抛物线y=过B,C两点,且与x轴的另一个交点为点A,连接AC.
(1)求抛物线的解析式;
(2)在抛物线上是否存在点D(与点A不重合),使得S△DBC=S△ABC,若存在,求出点D的坐标;若不存在,请说明理由;
(3)有宽度为2,长度足够长的矩形(阴影部分)沿x轴方向平移,与y轴平行的一组对边交抛物线于点P和点Q,交直线CB于点M和点N,在矩形平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.
如图甲,在正方形ABCD中,AB=6cm,点P、Q从A点沿边AB、BC、CD运动,点M从A点沿边AD、DC、CB运动,点P、Q的速度分别为1cm/s,3cm/s,点M的速度2cm/s.若它们同时出发,当点M与点Q相遇时,所有点都停止运动.设运动的时间为ts,△PQM的面积为Scm2,则S关于t的函数图象如图乙所示.结合图形,完成以下各题:
(1)填空:a= ;b= ;c= .
(2)当t为何值时,点M与点Q相遇?
(3)当2<t≤3时,求S与t的函数关系式;
(4)在整个运动过程中,△PQM能否为直角三角形?若能,请求出此时t的值;若不能,请说明理由.