某门市销售两种商品,甲种商品每件售价为300元,乙种商品每件售价为80元.该门市为促销制定了两种优惠方案:
方案一:买一件甲种商品就赠送一件乙种商品;
方案二:按购买金额打八折付款.
某公司为奖励员工,购买了甲种商品20件,乙种商品x()件.
(1)分别直接写出优惠方案一购买费用(元)、优惠方案二购买费用(元)与所买乙种商品x(件)之间的函数关系式;
(2)若该公司共需要甲种商品20件,乙种商品40件.设按照方案一的优惠办法购买了m件甲种商品,其余按方案二的优惠办法购买.请你写出总费用w与m之间的关系式;利用w与m之间的关系式说明怎样购买最实惠.
如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.
求证:(1)BE=DF;(2)AF∥CE.
如图,中,,,,将折叠,使点B恰好落在斜边AC上,与点重合,AD为折痕,求的长.
已知a、b、c是的三边,且满足,试判断的形状.
阅读下面解题过程:
【解析】
由得:①
②
即③
∴为Rt△.④
试问:以上解题过程是否正确:_________.
若不正确,请指出错在哪步?______(填代号)
错误原因是______________________.
本题的结论应为_______________________.
已知一次函数.
(1)若函数图象经过原点,求m的值;
(2)若y随x的增大而增大,求m的取值范围.
已知与成正比例,且时,.
(1)求出与之间的函数关系式;
(2)在所给的直角坐标系(如图)中画出函数的图象;
(3)直接写出当时,自变量的取值范围.