在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(,)].
(1)求出y与x的函数关系式.
(2)当销售单价为多少元时,月销售额为14000元;
(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
已知:如图,△ABC内接于⊙O,AB为直径,点D是弧AC的中点,连结BD交AC于点E,过D点作⊙O的切线交BC的延长线于F.
(1)求证:∠FDB=∠AED.
(2)若⊙O的半径为5,tan∠FBD=,求CF的长.
经过实验获得两个变量x(x> 0),y(y>0)的一组对应值如下表.
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
y | 7 | 3.5 | 2.33 | 1.75 | 1.4 | 1.17 | 1 |
(1)在网格中建立平面直角坐标系,画出相应的函数图象,求出这个函数表达式;
(2)结合函数图象解决问题:(结果保留一位小数)
①的值约为多少?
②点A坐标为(6,0),点B在函数图象上,OA=OB,则点B的横坐标约是多少?
如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.
(1)求∠F的度数;
(2)若CD=2,求DF的长.
田忌赛马的故事为我们所熟知.小亮与小齐学习概率初步知识后设计了如下游戏:小亮手中有方块l0、8、6三张扑克牌,小齐手中有方块9、7、5三张扑克牌.每人从各自手中取一张牌进行比较,数字大的为本“局”获胜,每次取的牌不能放回.
(1)若每人随机取手中的一张牌进行比赛,求小齐本“局”获胜的概率;
(2)若比赛采用三局两胜制,即胜2局或3局者为本次比赛获胜者.当小亮的三张牌出牌顺序为先出6,再出8,最后出l0时,小齐随机出牌应对,求小齐本次比赛获胜的概率.
某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在D点测得旗杆顶端E点的仰角为30°.已知小明和小军的距离BD=6 m,小明的身高AB=1.5 m,小军的身高CD=1.75 m,求旗杆的高EF.(结果精确到0.1,参考数据:≈1.41,≈1.73)