满分5 > 初中数学试题 >

己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,...

己知关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根x1,x2

(1)求k的取值范围;

(2)若=﹣1,求k的值.

 

(1)k>﹣;(2)k=3. 【解析】(1)根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次方程,解之即可得出k的取值范围; (2)根据根与系数的关系可得出x1+x2=﹣2k﹣3、x1x2=k2,结合=﹣1即可得出关于k的分式方程,解之经检验即可得出结论. (1)∵关于x的一元二次方程x2+(2k+3)x+k2=0有两个不相等的实数根, ∴△=(2k+3)2﹣4k2>0, 解得:k>﹣; (2)∵x1、x2是方程x2+(2k+3)x+k2=0的实数根, ∴x1+x2=﹣2k﹣3,x1x2=k2, ∴=﹣1, 解得:k1=3,k2=﹣1, 经检验,k1=3,k2=﹣1都是原分式方程的根, 又∵k>﹣, ∴k=3.
复制答案
考点分析:
相关试题推荐

合肥市某学校搬迁,教师和学生的寝室数量在增加,若该校今年准备建造三类不同的寝室,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在2030之间(包括2030),且四人间的数量是双人间的5.

(1)2015年学校寝室数为64,2017年建成后寝室数为121,20152017年的平均增长率;

(2)若建成后的寝室可供600人住宿,求单人间的数量;

(3)若该校今年建造三类不同的寝室的总数为180,则该校的寝室建成后最多可供多少师生住宿?

 

查看答案

mn分别为一元二次方程x22x2 0180的两个实数根,求m23mn的值

 

查看答案

列方程解应用题:

某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?

 

查看答案

解方程.

1)解方程:2y2+4yy+2

2)解方程:2x32x29

 

查看答案

(1)计算:(2)2

(2)计算:2×(1).

(3)计算:÷2

(4)计算:(3)(3) (2)

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.