满分5 > 初中数学试题 >

下列各数是无理数的是( ) A. 0 B. C. π D. 3.14

下列各数是无理数的是(  )

A. 0 B.  C. π D. 3.14

 

C 【解析】 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. A. 0是整数,属于有理数; B. 是分数,属于有理数; C. π是无限不循环小数,属于无理数; D. 3.14是小数,属于有理数; 故选C.
复制答案
考点分析:
相关试题推荐

(发现)如图,点EF分别在正方形ABCD的边BCCD上,连接EF.因为AB=AD,所以把ΔABEA逆时针旋转90°至ΔADG,可使ABAD重合.因为∠CDA=B=90°,所以∠FDG=180°,所以FDG共线.

如果__________(填一个条件),可得ΔAEF≌ΔAGF.经过进一步研究我们可以发现:当BEEFFD满足__________时,∠EAF=45°.

(应用)

如图,在矩形ABCD中,AB=6AD=m,点E在边BC上,且BE=2

1)若m=8,点F在边DC上,且∠EAF=45°(如图),求DF的长;

2)若点F在边DC上,且∠EAF=45°,求m的取值范围.

 

查看答案

如图,已知抛物线x轴交于点AB(点A在点B的左侧),与y轴交于点C

1)点A的坐标为_____,点C的坐标为______

2)如图,点M在抛物线位于AC两点间的部分(与AC两点不重合),过点MPMAC,与x轴正半轴交于点P,连接PC,过点MMN平行于x轴,交PC于点N

①若点NPC的中点,求出PM的长;

②当MN=NP时,求PC的长以及点M的坐标.

 

查看答案

如图,ABCADE中,ACB=AED=90°,连接BDCEEAC=DAB.

1)求证:ABC ∽△ADE

2)求证:BAD ∽△CAE

3)已知BC=4AC=3AE=.将AED绕点A旋转,当点E落在线段CD上时,求 BD的长.

 

查看答案

如图,点A-32)和点Bmn)在反比例函数y=k≠0)的图象上(其中m0),ACx轴,垂足为CBDy轴,垂足为D,直线ABx轴相交于点E

1)写出反比例函数表达式;

2)求tanABD(用含m的代数式表示);

3)若CE=6,直接写出B点的坐标.

 

查看答案

如图,二次函数的图像与坐标轴交于点A1 0)和点C.经过点A的直线与二次函数图像交于另一点B,点B与点C关于二次函数图像的对称轴对称.

1)求一次函数表达式;

2)点P在二次函数图像的对称轴上,当ACP的周长最小时,请求出点P的坐标.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.