如图,抛物线与轴交于、两点,与轴交于点,且.
(1)求抛物线的解析式及顶点的坐标;
(2)判断的形状,证明你的结论;
(3)点是轴上的一个动点,当的值最小时,求的值.
如图,内接于,是的直径,过作射线交的延长线于点,且.
(1)求证:是的切线;
(2)若,,求的长;
(3)求证:.
为丰富村民业余文化生活,某开发区某村民委员会动员村民自愿集资建立一个书、报、刊阅览室.经预算,一共需要筹资50000元,其中一部分用于购买桌、凳、柜等设施,另一部分用于购买书、报、刊.
(1)村委会计划,购买书、报、刊的资金不少于购买桌、凳、柜资金的4倍,问最多用多少资金购买桌、凳、柜等设施?
(2)经初步估计,有250户村民自愿参与集资,那么平均每户需集资200元.开发区管委会了解情况后,赠送了一批阅览室设施和书、报、刊.这样,只需参与户共集资36000元.经村委会进一步宣传,自愿参与的户数在250户的基础上增加了(其中).则每户平均集资的资金在200元的基础上减少了,求的值.
在同一副扑克牌中取出6张扑克牌,分别是黑桃2、4、6,红心6、7、8.将扑克牌背面朝上分别放在甲、乙两张桌面上,先从甲桌面上任意摸出一张黑桃,再从乙桌面上任意摸出一张红心.
(1)表示出所有可能出现的结果;
(2)小黄和小石做游戏,制定了两个游戏规则:
规则1:若两次摸出的扑克牌中,至少有一张是“6”,小黄赢;否则,小石赢.
规则2:若摸出的红心牌点数是黑桃牌点数的整数倍时,小黄赢;否则,小石赢.
小黄想要在游戏中获胜,会选择哪一条规则,并说明理由.
如图,,平分,平分,且与交于.
求证:(1);
(2).
已知关于的方程.
(1)若方程有两不等实根,求的取值范围;
(2)设,是方程的两个根,记,的值能为4吗?若能,求出此时的值;若不能,请说明理由.