经市场调研发现:某品牌童装平均每天可售出20件,每件盈利40元.在每件降价幅度不超过18元的情况下,若每件童装降价1元,则每天可多售出2件,设降价x元.
(1)降价x元后,每件童装盈利是______元,每天销售量是______件;
(2)要想每天销售这种童装盈利1200元,那么每件童装应降价多少元?
(3)每天能盈利1800元吗?如果能,每件童装应降价多少元?如果不能,请说明理由.
已知:关于的方程.
(1)若这个方程有两个不相等的实数根,求的取值范围;
(2)若此方程有一个根是1,求的值.
如图,在△ABC中,∠B﹦90°,AB﹦6cm,BC﹦3cm,点P以1cm/s的速度从点A开始沿边AB向点B移动,点Q以2cm/s的速度从点B开始沿边BC向点C移动.如果点P、Q分别从点A、B同时出发,多少时间后,P、Q之间的距离等于cm?
如图,在△ABC中,AB=17cm,AC=8cm,BC=15cm,将AC沿AE折叠,使得点C与AB上的点D重合.
(1)证明:△ABC是直角三角形;
(2)求△AEB的面积.
阅读下列材料,解答后面的问题:
材料:求代数式x2-2x+5的最小值.
小明同学的解答过程:x2-2x+5=x2-2x+1-1+5=(x-1)2+4
我们把这种解决问题的方法叫做“配方法”.
(1)请按照小明的解题思路,写出完整的解答过程;
(2)请运用“配方法”解决问题:
①若x2+y2-6x+10y+34=0,求y-x的立方根;
②分解因式:4x4+1.
先化简,再求值:(+)(-)-(-)2,其中=2-1.