满分5 > 初中数学试题 >

如图,C、D是以AB为直径的⊙O上的点,,弦CD交AB于点E. (1)当PB是⊙...

如图,C、D是以AB为直径的O上的点,,弦CD交AB于点E.

(1)当PB是O的切线时,求证:∠PBD=∠DAB;

(2)求证:BC2﹣CE2=CE•DE;

(3)已知OA=4,E是半径OA的中点,求线段DE的长.

 

(1)证明见解析(2)证明见解析(3) 【解析】 (1)由AB是⊙O的直径知∠BAD+∠ABD=90°,由PB是⊙O的切线知∠PBD+∠ABD=90°,据此可得答案; (2)连接OC,设圆的半径为r,则OA=OB=OC=r,证△ADE∽△CBE得DE•CE=AE•BE=r2-OE2,由知∠AOC=∠BOC=90°,根据勾股定理知CE2=OE2+r2、BC2=2r2,据此得BC2-CE2=r2-OE2,从而得证; (3)先求出BC=4、CE=2,根据BC2-CE2=CE•DE计算可得. (1)∵AB是⊙O的直径, ∴∠ADB=90°,即∠BAD+∠ABD=90°, ∵PB是⊙O的切线, ∴∠ABP=90°,即∠PBD+∠ABD=90°, ∴∠BAD=∠PBD; (2)∵∠A=∠C、∠AED=∠CEB, ∴△ADE∽△CBE, ∴,即DE•CE=AE•BE, 如图,连接OC, 设圆的半径为r,则OA=OB=OC=r, 则DE•CE=AE•BE=(OA﹣OE)(OB+OE)=r2﹣OE2, ∵, ∴∠AOC=∠BOC=90°, ∴CE2=OE2+OC2=OE2+r2,BC2=BO2+CO2=2r2, 则BC2﹣CE2=2r2﹣(OE2+r2)=r2﹣OE2, ∴BC2﹣CE2=DE•CE; (3)∵OA=4, ∴OB=OC=OA=4, ∴BC==4, 又∵E是半径OA的中点, ∴AE=OE=2, 则CE===2, ∵BC2﹣CE2=DE•CE, ∴(4)2﹣(2)2=DE•2, 解得:DE=.
复制答案
考点分析:
相关试题推荐

央视经典咏流传开播以来受到社会广泛关注.我市某校就中华文化我传承——地方戏曲进校园的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:

图中A表示很喜欢”,B表示喜欢”,C表示一般”,D表示不喜欢”.

(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.

(2)补全条形统计图;

(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;

(4)在抽取的A5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.

 

查看答案

画出二次函数y=2x2+8x+6的图象.

1)根据图象写出当yx的增大而减小时x的范围;

2)根据图象写出满足不等式2x2+8x+60x的取值范围;

3)求函数图象与两坐标轴交点所围成的三角形的面积.

 

查看答案

如图,在平面直角坐标系中,每个小方格都是边长为1的正方形,ABC的三个顶点坐标为A1-4),B3-3),C1-1).现将ABC绕点O顺时针旋转90°,得到A1B1C1

1)画出旋转后的A1B1C1

2)求扇形OAA1的面积.

 

查看答案

如图,已知⊙O的直径AB=10,弦AC=6,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.

(1)求证:DE是⊙O的切线.

(2)求DE的长.

 

查看答案

已知关于x的一元二次方程x2-4x+m=0.

(1)若方程有实数根求实数m的取值范围

(2)若方程两实数根为x1,x2且满足5x1+2x2=2,求实数m的值.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.