如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.
(1)求证:AF=DC;
(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.
(3)在(2)的条件下,要是四边形ADCF为正方形,在△ABC中应添加什么条件,请直接把补充条件写在横线上 (不需说明理由).
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150745600/STEM/00b6683d13b74f3096299684551e829e.png]
在一次聚会上,规定每两个人见面必须握手,且握手1次.
(1)若参加聚会的人数为3,则共握手 次;若参加聚会的人数为5,则共握手 次;
(2)若参加聚会的人数为n(n为正整数),则共握手 次;
(3)若参加聚会的人共握手28次,请求出参加聚会的人数.
(4)嘉嘉由握手问题想到了一个数学问题:若线段AB上共有m个点(不含端点A,B),线段总数为多少呢?请直接写出结论.
某学校为了了解九年级学生寒假的阅读情况,随机抽取了该年级的部分学生进行调查,统计了他们每人的阅读本数,设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:
阅读本数n(本) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
人数(名) | 1 | 2 | 6 | 7 | 12 | x | 7 | y | 1 |
请根据以上信息回答下列问题:
(1)分别求出统计表中的x,y的值;
(2)求扇形统计图中“优秀”类所在扇形的圆心角的度数;
(3)如果随机去掉一个数据,求众数发生变化的概率,并指出众数变化时,去掉的是哪个数据.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150721024/STEM/fd85c35161634f71b20809e4321f104b.png]
已知:a+b=4
(1)求代数式(a+1)(b+1)﹣ab值;
(2)若代数式a2﹣2ab+b2+2a+2b的值等于17,求a﹣b的值.
如图,点A1、A2、A3…在直线y=x上,点C1,C2,C3…在直线y=2x上,以它们为顶点依次构造第一个正方形A1C1A2B1,第二个正方形A2C2A3B2…,若A2的横坐标是1,则B3的坐标是_____,第n个正方形的面积是_____.
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150704640/STEM/947823175bfc4b878475a9a15e16a258.png]
如图,在△ABC中,∠ABC=2∠C,小明做了如下操作:
(Ⅰ)以A为圆心,AB长为半径画弧,交AC于点F;
(Ⅱ)以A为圆心,任意长为半径画弧,交AB、AC于M、N两点,分别以M、N为圆心,以大于MN为半径画弧,两弧交于一点P,作射线AP,交BC于点E;
(Ⅲ)作直线EF.
依据小明尺规作图的方法,若AB=3.3,BE=1.8,则AC的长为___________;