如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是( )
A. 4.5 B. 8 C. 10.5 D. 14
在下列四个图形中,是中心对称图形的是( )
A. B. C. D.
将抛物线y=﹣3x2先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是( )
A. y=﹣3(x﹣1)2﹣2 B. y=﹣3(x﹣1)2+2
C. y=﹣3(x+1)2﹣2 D. y=﹣3(x+1)2+2
已知,则的值为( )
A. ﹣3 B. 3 C. D.
如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作α;设半圆O的半径为R,AM的长度为m,回答下列问题:
(1)探究:若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是 ;如图2,当α= °时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα= (用含有R、m的代数式表示)
(4)拓展:如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 ,并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示)
[Failed to download image : http://192.168.0.10:8086/QBM/2019/5/21/2208296361205760/2209339150786560/STEM/e3979c1fd5634ee8aa8a249dca591e9e.png]
某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.