满分5 > 初中数学试题 >

(1)阅读理解:利用旋转变换解决数学问题是一种常用的方法。如图,点是等边三角形内...

1)阅读理解:利用旋转变换解决数学问题是一种常用的方法。如图,点是等边三角形内一点,,求的度数。为利用已知条件,不妨把绕点顺时针旋转60°得,连接,则的长为_______;在中,易证,且的度数为_____,综上可得的度数为__      

2)类比迁移:如图,点是等腰内的一点,。求的度数;

3)拓展应用:如图,在四边形中,,请直接写出的长。

 

(1)2, 30°, 90° ;(2)90°;(3)2. 【解析】 (1)由旋转性质、等边三角形的判定可知△CP′P是等边三角形,由等边三角形的性质知∠CP′P=60°,根据勾股定理逆定理可得△AP′P是直角三角形,继而可得答案. (2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′,同理可得△CP′P是等腰直角三角形和△AP′P是直角三角形,所以∠APC=90°; (3)如图3,将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG,根据勾股定理求CG的长,就可以得BD的长. 【解析】 (1)把△BPC绕点C顺时针旋转60°得△AP'C,连接PP′(如图1). 由旋转的性质知△CP′P是等边三角形; ∴P′A=PB=、∠CP′P=60°、P′P=PC=2, 在△AP′P中,∵AP2+P′A2=12+()2=4=PP′2; ∴△AP′P是直角三角形; ∴∠P′AP=90°. ∵PA=PC, ∴∠AP′P=30°; ∴∠BPC=∠CP′A=∠CP′P+∠AP′P=60°+30°=90°. 故答案为:2;30°;90°; (2)如图2,把△BPC绕点C顺时针旋转90°得△AP'C,连接PP′. 由旋转的性质知△CP′P是等腰直角三角形; ∴P′C=PC=1,∠CPP′=45°、P′P=,PB=AP'=, 在△AP′P中,∵AP'2+P′P2=()2+()2=2=AP2; ∴△AP′P是直角三角形; ∴∠AP′P=90°. ∴∠APP'=45° ∴∠APC=∠APP'+∠CPP'=45°+45°=90° (3)如图3, ∵AB=AC, 将△ABD绕点A逆时针旋转得到△ACG,连接DG.则BD=CG, ∵∠BAD=∠CAG, ∴∠BAC=∠DAG, ∵AB=AC,AD=AG, ∴∠ABC=∠ACB=∠ADG=∠AGD, ∴△ABC∽△ADG, ∵AD=2AB, ∴DG=2BC=10, 过A作AE⊥BC于E, ∵∠BAE+∠ABC=90°,∠BAE=∠ADC, ∴∠ADG+∠ADC=90°, ∴∠GDC=90°, ∴CG===2, ∴BD=CG=2.
复制答案
考点分析:
相关试题推荐

某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=-x+26

1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;

2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?

3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.

 

查看答案

如图,某数学兴趣小组为测量一棵古树和教学楼的高,先在处用高1.5米的测角仪测得古树顶端的仰角,此时教学楼顶端恰好在视线上,再向前走9米到达处,又测得教学楼顶端的仰角,点三点在同一水平线上.

1)计算古树的高;

2)计算教学楼的高.(结果精确到0.1米,参考数据:.

 

查看答案

如图,⊙OABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点DDEAC分别交ACAB的延长线于点EF

1)求证:EF是⊙O的切线;

2)若AC=4CE=2,求的长度.(结果保留π

 

查看答案

如图,平行四边形ABCD放置在平面直角坐标系xOy中,已知A-20),B20),D03),反比例函数yx0)的图象经过点C

1)求此反比例函数的解析式;

2)问将平行四边形ABCD向上平移多少个单位,能使点B落在双曲线上?

 

查看答案

书香校园活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表如下:

类别

家庭藏书m

学生人数

A

0≤m≤25

20

B

26≤m≤100

a

C

101≤m≤200

50

D

m≥201

66

 

根据以上信息,解答下列问题:

(1)该调查的样本容量为_____a_____

(2)在扇形统计图中,“A”对应扇形的圆心角为_____°

(3)若该校有2000名学生,请估计全校学生中家庭藏书200本以上的人数.

 

查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.