若式子有意义,则x的取值范围为( )
A. x≥2 B. x≠3
C. x≥2或x≠3 D. x≥2且x≠3
若一个直角三角形的两边长分别是3和4,则第三边长为( )
A. 5 B. C. 5或 D. 无法确定
下列各式是最简二次根式的是( )
A. B. C. D.
如图,抛物线y=ax2+bx+3交y轴于点A,交x轴于点B(-3,0)和点C(1,0),顶点为点M.
(1)求抛物线的解析式;
(2)如图,点E为x轴上一动点,若△AME的周长最小,请求出点E的坐标;
(3)点F为直线AB上一个动点,点P为抛物线上一个动点,若△BFP为等腰直角三角形,请直接写出点P的坐标.
(1)阅读理解:利用旋转变换解决数学问题是一种常用的方法。如图,点是等边三角形内一点,,求的度数。为利用已知条件,不妨把绕点顺时针旋转60°得,连接,则的长为_______;在中,易证,且的度数为_____,综上可得的度数为__ ;
(2)类比迁移:如图,点是等腰内的一点,。求的度数;
(3)拓展应用:如图,在四边形中,,请直接写出的长。
某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=-x+26.
(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;
(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.