如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是( )
A. ∠4,∠2 B. ∠2,∠6 C. ∠5,∠4 D. ∠2,∠4
下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是( )
A. B. C. D.
下列说法正确的是( )
A. 射线比直线短 B. 两点确定一条直线
C. 经过三点只能作一条直线 D. 两点间的长度叫两点间的距离
学校每周一升国旗用的旗杆,给我们的形象可近似地看做( )
A. 直线 B. 射段 C. 线段 D. 折线
如图,B(2m,0)、C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E、A′两点.
(1)填空:∠AOB= °,用m表示点A′的坐标:A′ ;
(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且时,△D′OE与△ABC是否相似?说明理由;
(3)若E与原点O重合,抛物线与射线OA的另一个交点为M,过M作MN垂直y轴,垂足为N:
①求a、b、m满足的关系式;
②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为5,请你探究a的取值范围.
如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.
(1)求证:四边形EFDG是菱形;
(2)试证明EG2=GF•AF.