6或或
【解析】
由于本题的等腰三角形的底和腰不确定,分三种情况讨论:
①当BA=BP时,利用直角三角形斜边的中线等于斜边的一半;
②当AB=AP时,连接AO交PB于点D,过点O作OE⊥AB于点E,易得△AOE∽△ABD,利用相似三角形的性质求得BD,PB,然后利用相似三角形的判定定理△ABD∽△CPA,代入数据得出结果;
③当PA=PB时,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,易得AF=FB=3,利用勾股定理得OF=4,FP=9,易得△PFB∽△CGB,利用相似三角形的性质可求出CG:BG的值,设BG=t,则CG=3t,利用相似三角形的判定定理得△APF∽△CAG,利用相似三角形的性质得比例关系解得t,在Rt△BCG中,由勾股定理得出BC的长.
①当BA=BP时,
则AB=BP=BC=6,即线段BC的长为6;
②当AB=AP时,如图1,连接AO交PB于点D,过点O作OE⊥AB于点E,则AD⊥PB,AE=AB=3,
∴BD=DP,
在Rt△AEO中,AE=3,AO=5,
∴OE==4,
∵∠OAE=∠BAD,∠AEO=∠ADB=90°,
∴△AOE∽△ABD,
∴,即,
∴BD=,
∴BD=PD=,即PB=,
∵AB=AP=6,
∴∠ABD=∠APC,
∵∠PAC=∠ADB=90°,
∴△ABD∽△CPA,
∴,即,
∴CP=,
∴BC=BP-CP=-=;
③当PA=PB时,
如图2,连接PO并延长,交AB于点F,过点C作CG⊥AB,交AB的延长线于点G,连接OB,则PF⊥AB,
∴AF=FB=3,
在Rt△OFB中,OB=5,FB=3,∴OF=4,
∴FP=9,
∵∠PAF=∠ABP=∠CBG,∠AFP=∠CGB=90°,
∴△PFB∽△CGB,
∴,
设BG=t,则CG=3t,
∵∠PAF=∠ACG,∠AFP=∠AGC=90°,
∴△APF∽△CAG,
∴,
∴,
解得t=,
∴BG=,CG=,
在Rt△BCG中,BC=,
综上所述,当△PAB是等腰三角形时,线段BC的长为6或或;
故答案为:6或或.